책 이미지
책 정보
· 분류 : 외국도서 > 기술공학 > 기술공학 > 전력자원 > 전기 에너지
· ISBN : 9781394163212
· 쪽수 : 560쪽
· 출판일 : 2023-11-15
목차
Foreword
Preface
Acknowledgments
Chapter 1: Introduction
1.1 Electric Propulsion Background
1.2 Electric Thruster Types
1.3 Electrostatic Thrusters
1.3.1 Ion Thrusters
1.3.2 Hall Thrusters
1.4 Electromagnetic Thrusters
1.4.1 Magnetoplasmadynamic Thrusters
1.4.2 Pulsed Plasma Thrusters
1.4.3 Pulsed Inductive Thrusters
1.5 Beam/Plume Characteristics
References
Chapter 2: Thruster Principles
2.1 The Rocket Equation
2.2 Force Transfer in Electric Thrusters
2.2.1 Ion Thrusters
2.2.2 Hall Thrusters
2.2.3 Electromagnetic Thrusters
2.3 Thrust
2.4 Specific Impulse
2.5 Thruster Efficiency
2.6 Power Dissipation
2.7 Neutral Densities and Ingestion
Problems
References
Chapter 3: Basic Plasma Physics
3.1 Introduction
3.2 Maxwell’s Equations
3.3 Single Particle Motions
3.4 Particle Energies and Velocities
3.5 Plasma as a Fluid
3.5.1 Momentum Conservation
3.5.2 Particle Conservation
3.5.3 Energy Conservation
3.6 Diffusion in Partially Ionized Plasma
3.6.1 Collisions
3.6.2 Diffusion and Mobility Without a Magnetic Field
3.6.3 Diffusion Across Magnetic Fields
3.7 Sheaths at the Boundaries of Plasmas
3.7.1 Debye Sheaths
3.7.2 Pre-Sheaths
3.7.3 Child–Langmuir Sheath
3.7.4 Generalized Sheath Solution
3.7.5 Double Sheaths
3.7.6 Summary of Sheath Effects
Problems
References
Chapter 4: Hollow Cathodes
4.1 Introduction
4.2 Cathode Configurations
4.3 Thermionic Electron Emitters
4.4 Insert Region
4.5 Orifice Region
4.6 Cathode Plume Region
4.7 Heating and Thermal Models
4.7.1 Hollow Cathode Heaters
4.7.2 Heaterless Hollow Cathodes
4.7.3 Hollow Cathode Thermal Models
4.8 Hollow Cathode Life
4.8.1 Dispenser Cathode Insert-Region Plasmas
4.8.2 BaO Cathode Insert Temperature
4.8.3 Barium Depletion Model
4.8.4 Bulk-Material Insert Life
4.8.5 Cathode Poisoning
4.9 Keeper Wear and Life
4.10 Discharge Behavior and Instabilities
4.10.1 Discharge Modes
4.10.2 Suppression of Instabilities and Energetic Ion Production
4.10.3 Hollow Cathode Discharge Characteristics
Problems
References
Chapter 5: Ion Thruster Plasma Generators
5.1 Introduction
5.2 Idealized Ion Thruster Plasma Generator
5.3 DC Discharge Ion Thrusters
5.3.1 Generalized 0-D Ring-Cusp Ion Thruster Model
5.3.2 Magnetic Multipole Boundaries
5.3.3 Electron Confinement
5.3.4 Ion Confinement at the Anode Wall
5.3.5 Neutral and Primary Densities in the Discharge Chamber
5.3.6 Ion and Excited Neutral Production
5.3.7 Electron Temperature
5.3.8 Primary Electron Density
5.3.9 Power and Energy Balance in the Discharge Chamber
5.3.10 Discharge Loss
5.3.11 Discharge Stability
5.3.12 Recycling Behavior
5.3.13 Limitations of a 0-D Model
5.4 Kaufman Ion Thrusters
5.5 rf Ion Thrusters
5.6 Microwave Ion Thrusters
5.7 2-D Computer Models of the Ion Thruster
Discharge Chamber
5.7.1 Neutral Atom Model
5.7.2 Primary Electron Motion and Ionization Model
5.7.3 Discharge Chamber Model Results
Problems
References
Chapter 6: Ion Thruster Accelerator Grids
6.1 Grid Configurations
6.2 Ion Accelerator Basics
6.3 Ion Optics
6.3.1 Ion Trajectories
6.3.2 Perveance Limits
6.3.3 Grid Expansion and Alignment
6.4 Electron Backstreaming
6.5 High Voltage Considerations
6.5.1 Electrode Breakdown
6.5.2 Molybdenum Electrodes
6.5.3 Carbon–Carbon Composite Materials
6.5.4 Pyrolytic Graphite
6.5.5 Voltage Hold-off and Conditioning in Ion Accelerators
6.6 Ion Accelerator Grid Life
6.6.1 Grid Models
6.6.2 Barrel Erosion
6.6.3 Pits-and-Grooves Erosion
Problems
References
Chapter 7: Conventional Hall Thrusters
7.1 Introduction
7.1.1 Discharge Channel with Dielectric Walls (SPT)
7.1.2 Discharge Channel with Metallic Walls (TAL)
7.2 Operating Principles and Scaling
7.2.1 Crossed-Field Structure and the Hall Current
7.2.2 Ionization Length and Scaling
7.2.3 Plasma Potential and Current Distributions
7.3 Performance Models
7.3.1 Thruster Efficiency Definitions
7.3.2 Multiply-Charged Ion Correction
7.3.3 Dominant Power Loss Mechanisms
7.3.4 Electron Temperature
7.3.5 Efficiency of Thrusters with Dielectric Walls
7.3.6 Efficiency of TAL Thrusters Metallic Walls
7.3.7 Comparison of Thrusters with Dielectric and Metallic Walls
7.4 Discharge Dynamics and Oscillations
7.5 Channel Physics and Numerical Modeling
7.5.1 Basic Model Equations
7.5.2 Numerical Modeling and Simulations
7.6 Operational Life of Conventional Hall Thrusters
Problems
References
Chapter 8: Magnetically Shielded Hall Thrusters
8.1 Introduction
8.2 First Principles of Magnetic Shielding
8.3 The Protective Capabilties of Magnetic Shielding
8.3.1 Numerical Simulations
8.3.2 Laboratory Experiments and Model Validation
8.4 Magnetically Shielded Hall Thrusters with
Electrically Conducting Walls
8.5 Magnetic Shielding Low Power Hall Thrusters
8.4 Remarks on Magnetic Shielding in Hall Thrusters
References
Chapter 9: Electromagnetic Thrusters
9.1 Introduction
9.2 Magnetoplasmadynamic (MPD) Thrusters
9.2.1 Self Field MPD Thrusts
9.2.2 Applied-Field MPD Thrusters
9.2.3 Onset Phenomenon
9.2.4 MPD Thruster Performance Parameters
9.3 Ablative Pulsed Plasma Thrusters
9.3.1 Thruster Configurations and Performance
9.3.2 Physics and Modeling
9.4 Pulsed Inductive Thrusters
9.4.1 Thruster Performance
9.4.2 Physics and Modeling
References
Chapter 10: Future Directions in Electric Propulsion
10.1 Hall Thruster Developments
10.1.1 Alternative Propellants
10.1.2 Nested Channel Hall Thrusters for Higher Power
10.1.3 Double Stage Ionization and Acceleration Regions
10.1.4 Multipole Magnetic Fields in Hall Thrusters
10.2 Ion Thruster Developments
10.2.1 Alternative Propellants
10.2.2 Grid Systems for High Specific Impulse
10.3 Helicon Thruster Development
10.4 Magnetic Field Dependent Thrusters
10.4.1 Rotating Magnetic Field (RMF) Thrusters
10.4.2 Magnetic Induction Plasma Thrusters
10.4.3 Magnetic Reconnection Thrusters
10.5 Laser-Based Propulsion
10.6 Solar Sails
10.7 Hollow Cathode Discharge Thrusters
References
Chapter 11: Thruster Plumes and Spacecraft Interactions
1.1 Introduction
11.2 Plume Physics in Ion and Hall Thrusters
11.2.1 Plume Measurements
11.2.2 Flight Data
11.2.3 Laboratory Plume Measurements
11.3 Plume Models for Ion and Hall Thrusters
11.3.1 Primary Beam Expansion
11.3.2 Neutral Gas Plumes
11.3.3 Secondary-Ion Generation
11.3.4 Combined Models and Numerical Simulations
11.4 Spacecraft Interactions
11.4.1 Momentum of the Plume Particles
11.4.2 Sputtering and Contamination
11.4.3 Plasma Interactions with Solar Arrays
11.5 Interactions with Payloads
11.5.1 Microwave Phase Shift
11.5.2 Plume Plasma Optical Emission
Problems
References
Chapter 12: Flight Electric Thrusters
12.1 Introduction
12.2 Ion Thrusters
12.3 Hall Thrusters
12.4 Electromagnetic Thrusters
References
Appendices
A: Nomenclature
B: Gas Flow Unit Conversions and Cathode
Pressure Estimates
C: Energy Loss by Electrons
D: Ionization and Excitation Cross Sections for
Xenon and Krypton
E: Ionization and Excitation Reaction Rates in
Maxwellian Plasmas
F: Electron Relaxation and Thermalization Times
G: Clausing Factor Monte Carlo Calculation















