logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

Bayesian Statistics and Marketing

Bayesian Statistics and Marketing (Hardcover, 2)

Peter H. Rossi, Greg M. Allenby, Sanjog Misra (지은이)
Wiley
199,370원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
129,590원 -35% 0원
1,300원
128,290원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Bayesian Statistics and Marketing
eBook 미리보기

책 정보

· 제목 : Bayesian Statistics and Marketing (Hardcover, 2) 
· 분류 : 외국도서 > 경제경영 > 통계
· ISBN : 9781394219117
· 쪽수 : 400쪽
· 출판일 : 2024-07-22

목차

1 Introduction 1

1.1 A Basic Paradigm for Marketing Problems 2

1.2 A Simple Example 3

1.3 Benefits and Costs of the Bayesian Approach 5

1.4 An Overview of Methodological Material and Case Studies 6

1.5 Approximate Bayes Methods and This Book 7

1.6 Computing and This Book 8

2 Bayesian Essentials 11

2.1 Essential Concepts from Distribution Theory 11

2.2 The Goal of Inference and Bayes Theorem 15

2.3 Conditioning and the Likelihood Principle 16

2.4 Prediction and Bayes 17

2.5 Summarizing the Posterior 17

2.6 Decision Theory, Risk, and the Sampling Properties of Bayes Estimators 18

2.7 Identification and Bayesian Inference 20

2.8 Conjugacy, Sufficiency, and Exponential Families 21

2.9 Regression and Multivariate Analysis Examples 23

2.10 Integration and Asymptotic Methods 37

2.11 Importance Sampling 38

2.12 Simulation Primer for Bayesian Problems 42

2.13 Simulation from Posterior of Multivariate Regression Model 47

3 MCMC Methods 49

3.1 MCMC Methods 50

3.2 A Simple Example: Bivariate Normal Gibbs Sampler 52

3.3 Some Markov Chain Theory 57

3.4 Gibbs Sampler 63

3.5 Gibbs Sampler for the SUR Regression Model 64

3.6 Conditional Distributions and Directed Graphs 66

3.7 Hierarchical Linear Models 69

3.8 Data Augmentation and a Probit Example 74

3.9 Mixtures of Normals 78

3.10 Metropolis Algorithms 85

3.11 Metropolis Algorithms Illustrated with the Multinomial Logit Model 92

3.12 Hybrid MCMC Methods 95

3.13 Diagnostics 98

4 Unit-Level Models and Discrete Demand 103

4.1 Latent Variable Models 104

4.2 Multinomial Probit Model 106

4.3 Multivariate Probit Model 116

4.4 Demand Theory and Models Involving Discrete Choice 121

5 Hierarchical Models for Heterogeneous Units 129

5.1 Heterogeneity and Priors 130

5.2 Hierarchical Models 132

5.3 Inference for Hierarchical Models 134

5.4 A Hierarchical Multinomial Logit Example 137

5.5 Using Mixtures of Normals 143

5.6 Further Elaborations of the Normal Model of Heterogeneity 152

5.7 Diagnostic Checks of the First Stage Prior 155

5.8 Findings and Influence on Marketing Practice 156

6 Model Choice and Decision Theory 159

6.1 Model Selection 160

6.2 Bayes Factors in the Conjugate Setting 162

6.3 Asymptotic Methods for Computing Bayes Factors 163

6.4 Computing Bayes Factors Using Importance Sampling 165

6.5 Bayes Factors Using MCMC Draws from the Posterior 166

6.6 Bridge Sampling Methods 169

6.7 Posterior Model Probabilities with Unidentified Parameters 170

6.8 Chib’s Method 171

6.9 An Example of Bayes Factor Computation: Diagonal MNP models 172

6.10 Marketing Decisions and Bayesian Decision Theory 178

6.11 An Example of Bayesian Decision Theory: Valuing Household Purchase Information 180

7 Simultaneity 185

7.1 A Bayesian Approach to Instrumental Variables 186

7.2 Structural Models and Endogeneity/Simultaneity 195

7.3 Non-Random Marketing Mix Variables 200

8 A Bayesian Perspective on Machine Learning 207

8.1 Introduction 207

8.2 Regularization 209

8.3 Bagging 212

8.4 Boosting 216

8.5 Deep Learning 217

8.6 Applications 223

9 Bayesian Analysis for Text Data 227

9.1 Introduction 227

9.2 Consumer Demand 228

9.3 Integrated Models 236

9.4 Discussion 252

10 Case Study 1: Analysis of Choice-Based Conjoint Data Using A Hierarchical Logit Model 255

10.1 Choice-Based Conjoint 255

10.2 A Random Coefficient Logit 258

10.3 Sign Constraints and Priors 258

10.4 The Camera Data 262

10.5 Running the Model 266

10.6 Describing the Draws of Respondent Partworths 268

10.7 Predictive Posteriors 270

10.8 Comparison of Stan and Sawtooth Software to bayesm Routines 273

11 Case Study 2: WTP and Equilibrium Analysis with Conjoint Demand 277

11.1 The Demand for Product Features 278

11.2 Conjoint Surveys and Demand Estimation 282

11.3 WTP Properly Defined 287

11.4 Nash Equilibrium Prices -- Computation and Assumptions 294

11.5 Camera Example 298

12 Case Study 3: Scale Usage Heterogeneity 307

12.1 Background 307

12.2 Model 310

12.3 Priors and MCMC Algorithm 314

12.4 Data 316

12.5 Discussion 320

12.6 R Implementation 322

13 Case Study 4: Volumetric Conjoint 323

13.1 Introduction 323

13.2 Model Development 324

13.3 Estimation 329

13.4 Empirical Analysis 331

13.5 Discussion 339

13.6 Using the Code 342

13.7 Concluding Remarks 342

14 Case Study 5: Approximate Bayes and Personalized Pricing 343

14.1 Heterogeneity and Heterogeneous Treatment Effects 343

14.2 The Framework 344

14.3 Context and Data 345

14.4 Does the Bayesian Bootstrap Work? 346

14.5 A Bayesian Bootstrap Procedure for the HTE Logit 349

14.6 Personalized Pricing 351

Appendix A An Introduction to R and bayesm 357

A.1 Setting up the R Environment and bayesm 357

A.2 The R Language 360

A.3 Using bayesm 379

A.4 Obtaining Help on bayesm 379

A.5 Tips on Using MCMC Methods 381

A.6 Extending and Adapting Our Code 381

References 383

Index 389

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책