책 이미지
책 정보
· 분류 : 외국도서 > 컴퓨터 > 컴퓨터 비전/패턴 인식
· ISBN : 9781394266555
· 쪽수 : 480쪽
· 출판일 : 2025-11-12
목차
Preface………………………………………………………………. xxi
Pedagogy ……………………………………………………………xxi
Organization……………………………………………………….xxiv
Chapter 1. Practical MATLAB with Signals Theory ……………….. xxiv
Chapter 2. Introduction to Signals and Systems …………………..xxv
Chapter 3. Classi_cation of Signals ……………………………………xxv
Chapter 4. Linear Systems ………………………………………………..xxv
Chapter 5. The Fourier Series …………………………………………….xxv
Chapter 6. The Fourier Transform ………………………………………xxvi
Chapter 7. Practical Fourier Transforms ……………………………..xxvi
Chapter 8. The Laplace Transform ……………………………………..xxvi
Chapter 9. Discrete Signals ………………………………………………xxvi
Chapter 10. The z-Transform …………………………………………….xxvii
Chapter 11. Communications Systems……………………………… xxvii
0.1 Useful Information (inside cover / endpaper)………………… xxviii
0.1.1 Identities ……………………………………………… xxviii
0.1.2 De_nite Integrals …………………………………….xxviii
0.1.3 In_nite Series …………………………………………xxix
0.1.4 Orthogonality …………………………………………xxix
0.1.5 Signal Inner Product ………………………………..xxix
0.1.6 Convolution ……………………………………………xxix
0.1.7 Fourier Series ………………………………………….xxix
0.1.8 Complex Fourier Series……………………………..xxx
0.1.9 Fourier Transform …………………………………….xxx
0.1.10 Laplace Transform …………………………………xxx
0.1.11 z-Transform …………………………………………..xxx
0.2 List of Acronyms ………………………………………..xxxii
0.2.1 Communications Acronyms…………………… xxxiii
1 Practical MATLAB with Signals Theory 1
Learning Objectives ………………………………………………2
1.1 Introduction ……………………………………………………2
1.1.1 Accessing MATLAB ………………………………………..2
1.1.2 Learning MATLAB ………………………………………….4
1.1.3 The MATLAB Desktop……………………………………..4
1.1.4 Help with MATLAB …………………………………………5
1.1.5 Numeric Variables for Signals Theory ……………….6
1.1.6 MATLAB Arrays, Matrices, Vectors ……………………6
1.1.7 Recording a MATLAB session …………………………..9
1.2 Visualizing Functions ………………………………………..9
1.2.1 Making a Rough Sketch of a Function ……………….10
1.2.2 Plotting a Function by Hand ……………………………10
1.2.3 Plotting a Function with MATLAB ……………………..11
1.2.4 Enhanced Plotting Functions ………………………….13
1.3 MATLAB M-Files ……………………………………………….14
1.3.1 Creating a MATLAB Function ……………………………15
1.3.2 Anonymous Functions ……………………………………16
1.4 Numerical Integration ……………………………………….17
1.4.1 Generalized Numerical Integration …………………..19
1.5 The for loop ……………………………………………………..20
1.6 Conditional and Logical Expressions …………………..20
1.7 Piecewise Continuous Signals ……………………………22
1.8 Complex Numbers in MATLAB …………………………….24
1.8.1 Representation of Complex Numbers ………………..24
1.8.2 Euler's Formula ………………………………………………25
1.8.3 The Complex Plane …………………………………………26
Viewing a Function from Different Perspectives ………………28
1.9 Conclusions ………………………………………………………..29
1.10 Worked Problems ……………………………………………….30
1.11 End of Chapter Exercises ……………………………………..33
Bibliography ………………………………………………………………36
2 Introduction to Signals and Systems 37
Learning Objectives ……………………………………………………37
2.1 Introduction …………………………………………………………38
2.1.1 What is a Signal? ……………………………………………….39
2.1.2 What is a System? ……………………………………………..39
2.2 Introduction to Signal Manipulation ………………………...41
2.2.1 Amplification ……………………………………..42
2.2.2 Shifting ……………………………………………..42
2.2.3 Scaling ………………………………………………44
2.2.4 Linear Combination ……………………………..46
2.2.5 Addition and Multiplication of Signals ……………….4
2.2.6 Visualizing Signals - An Important Skill ……………..49
2.3 Basic Signals …………………………………………………..50
2.3.1 The Unit Rectangle : rect(t) ……………………………..50
2.3.2 The Unit Step u(t) ………………………………………….52
2.3.3 The Exponential ekt ………………………………………..55
2.3.4 The Unit Impulse δ(t) ……………………………………..56
2.3.5 Plotting the Impulse Aδ(t-x) …………………………….60
2.4 The Sinusoidal Signal ……………………………………….61
2.4.1 The One-Sided Cosine Representation……………. 63
2.4.2 Phase Change - ……………………………………………65
Phase Change vs. Time Shift ………………………………….65
2.4.3 Sine vs. Cosine …………………………………………….68
2.5 Conclusions ………………………………………………………69
2.6 Worked Problems ……………………………………………….69
2.7 End of Chapter Exercises ……………………………………..72
Bibliography …………………………………………………………….76
3 Classification of Signals 79
Learning Objectives ………………………………………………79
3.1 Introduction ……………………………………………………80
3.2 Odd and Even Signals ………………………………………80
3.2.1 Combining Odd and Even signals …………………….82
3.2.2 The constant value s(t) = k ………………………………84
3.3 Periodic Signals ……………………………………………….85
3.3.1 DC Component in Periodic Signals …………………..86
3.3.2 Sinusoids and Rectifiers ………………………………….86
3.3.3 Square Wave …………………………………………89
3.3.4 Sawtooth Wave ……………………………………..89
3.3.5 Triangle wave …………………………………………89
3.3.6 Pulse Train ……………………………………………..91
3.3.7 Rectangular Pulse Train ……………………………91
3.3.8 Impulse Train ………………………………………….93
3.3.9 Trigonometric Identities …………………………93
3.3.10 Sinusoidal Multiplication …………………………95
Modulation Property …………………………95
Dial Tone Generator …………………………97
Squaring the Sinusoid …………………………99
3.4 Energy and Power Signals …………………………101
3.4.1 Periodic Signals = Power Signals ………………………… 104
Vrms is not always A/√2 …………………………105
3.4.2 Comparing Signal Power: The Decibel (dB) …………………………105
3.5 Complex Signals …………………………108
3.6 Discrete Time Signals …………………………111
3.7 Random Signals …………………………113
3.8 Conclusions …………………………115
3.9 Worked Problems …………………………115
3.10 End of Chapter Exercises …………………………118
Bibliography …………………………127
4 Linear Systems 129
Learning Objectives …………………………129
4.1 Introduction …………………………130
4.2 Definition of a Linear System …………………………130
4.2.1 Superposition …………………………131
4.2.2 Example 1: Zero-State Response …………………………132
4.2.3 Example 2: Operating in a linear region …………………………133
4.2.4 Example 3: Mixer …………………………135
4.2.5 Linear Time-Invariant (LTI) Systems …………………………136
4.2.6 Bounded Input, Bounded Output …………………………138
4.2.7 System Behavior as a Black Box …………………………139
4.3 LTI System Response Function h(t) …………………………139
4.4 Convolution …………………………140
4.4.1 The Convolution Integral …………………………141
4.4.2 Convolution is Commutative …………………………144
4.4.3 Convolution is Associative …………………………145
4.4.4 Convolution is Distributive over Addition …………………………147
4.4.5 Evaluation of the Convolution Integral …………………………147
Graphical Convolution 1: Rectangle with Itself …………………………148
4.4.6 Convolution Properties …………………………150
Graphical Convolution 2: Two Rectangles …………………………151
Graphical Convolution 3: Rectangle and Exponential Decay…………………………152
4.4.7 Convolution in MATLAB …………………………154
4.5 Determining h(t) in an Unknown System …………………………157
4.5.1 The Unit Impulse δ(t) Test Signal …………………………157
4.5.2 Convolution and Signal Decomposition …………………………158
Convolution and Periodic Signals …………………………160
4.5.3 An Ideal Distortionless System …………………………160
Deconvolution …………………………161
4.6 Causality …………………………162
4.6.1 Causality and Zero Input Response …………………………164
4.7 Combined Systems …………………………164
4.8 Convolution and Random Numbers …………………………166
4.9 Useful Hints and Help with MATLAB …………………………168
4.10 Chapter Summary …………………………169
4.11 Conclusions …………………………170
4.12 Worked Problems …………………………170
4.13 End of Chapter Exercises …………………………173
Bibliography ………………………… 180
5 The Fourier Series 181
Learning Objectives …………………………181
Chapter Overview …………………………182
5.1 Introduction …………………………182
5.2 Expressing Signals by Components …………………………182
5.2.1 The Spectrum Analyzer …………………………184
5.2.2 Approximating a Signal s(t) by Another …………………………184
5.2.3 Estimating One Signal by Another …………………………187
5.3 Part One - Orthogonal Signals …………………………189
5.4 Orthogonality ………………………… 190
5.4.1 An Orthogonal Signal Space …………………………191
5.4.2 The Signal Inner Product Formulation …………………………193
5.4.3 Complete Set of Orthogonal Signals …………………………195
5.4.4 What if a Complete Set is not Present? …………………………196
5.4.5 An Orthogonal Set of Signals …………………………196
5.5 Part Two - The Fourier Series …………………………204
5.5.1 The Orthogonal Signals {sin(2?m?ot); cos(2?n?ot)} …………………………204
5.5.2 The Fourier Series - An Orthogonal Set? …………………………205
5.6 Computing Fourier Series Components …………………………209
5.6.1 Fourier Series Approximation to an Odd Square Wave ……210
5.6.2 Zero-Frequency (DC) Component …………………………211
5.6.3 Fundamental Frequency Component …………………………212
5.6.4 Higher Order Components …………………………213
5.6.5 Frequency Spectrum of the Square Wave s(t) …………………………215
5.7 Odd and Even Square Waves …………………………217
5.7.1 The Fourier Series Components of an Even Square Wave…………………………219
5.8 Gibb's Phenomenon …………………………221
5.9 Setting-Up the Fourier Series Calculation …………………………224
5.9.1 Appearance of Pulse Train Frequency Components …………………………226
5.10 Some Common Fourier Series …………………………231
5.11 Practical Harmonics …………………………232
5.11.1 Audio Ampli_er Specs - Total Harmonic Distortion …………………………232
5.11.2 The CB Radio Booster …………………………233
5.12 Part Three: The Complex Fourier Series …………………………235
5.12.1 Not all Signals are Even or Odd…………………………235
5.13 The Complex Fourier Series …………………………237
5.13.1 Complex Fourier Series - The Frequency Domain …………………………238
5.13.2 Comparing the Real and Complex Fourier Series …………………………243
5.13.3 Magnitude and Phase …………………………244
5.14 Complex Fourier Series Components …………………………245
5.14.1 Real Signals and the Complex Fourier Series …………………………247
5.14.2 Stretching and Squeezing: Time vs. Frequency …………………………248
5.14.3 Shift in Time …………………………249
5.14.4 Change in Amplitude …………………………250
5.14.5 Power in Periodic Signals …………………………250
Find the Total Power in s(t) = Acos(t) + B sin(t) …………………………251
5.14.6 Parseval's Theorem for Periodic Signals …………………………252
5.15 Properties of the Complex Fourier Series …………………………258
5.16 Analysis of a DC Power Supply …………………………258
5.16.1 The DC Component …………………………259
5.16.2 An AC-DC Converter …………………………260
5.16.3 Vrms is always greater than or equal to Vdc …………………………261
5.16.4 Fourier Series: The Full-wave Rectifier …………………………261
5.16.5 Complex Fourier series components Cn …………………………264
Power in the Fundamental Frequency 120 Hz ………………………………267
5.17 The Fourier Series with MATLAB ……………………………………………268
5.17.1 Finding Fourier Series Components ………………………………………268
A full-wave rectified cosine (60 Hz) …………………………………………………..269
5.17.2 Effective use of the Fast Fourier Transform………………..272
5.18 Conclusions …………………………………………………..276
5.19 Worked Problems …………………………………………………..277
5.20 End of Chapter Exercises …………………………………………………..281
Bibliography …………………………………………………..289
6 The Fourier Transform 291
Learning Objectives …………………………………………………..291
6.1 Introduction …………………………………………………..292
6.1.1 A Fresh Look at the Fourier Series …………………………………………………..292
Periodic and Non-Periodic Signals …………………………………………………..293
6.1.2 Approximating a Non-Periodic Signal Over All Time …………………………………295
6.1.3 Definition of the Fourier Transform …………………………………………………..299
6.1.4 Existence of the Fourier Transform …………………………………………………..300
6.1.5 The Inverse Fourier Transform …………………………………………………..301
6.2 Properties of the Fourier Transform …………………………………………………..302
6.2.1 Linearity of the Fourier Transform …………………………………………302
6.2.2 Value of the Fourier transform at the Origin …………………………304
6.2.3 Odd and Even Functions and the Fourier Transform ……………………305
6.3 The Rectangle Signal ………………………………………………….. 307
Alternate Solution …………………………………………………..308
6.4 The Sinc Function …………………………………………………..309
6.4.1 Expressing a Function in Terms of sinc(t) …………………………………………312
6.4.2 The Fourier Transform of a General Rectangle ………………………………313
6.5 Signal Manipulations: Time and Frequency ………………………………………318
6.5.1 Amplitude Variations …………………………………………………..318
6.5.2 Stretch and Squeeze: The Sinc Function …………………………………………………..318
6.5.3 The Scaling Theorem…………………………………………………..319
6.5.4 Testing the Limits …………………………………………………..321
6.5.5 A Shift in Time …………………………………………………..323
6.5.6 The Shifting Theorem …………………………………………………..324
6.5.7 The Fourier Transform of a Shifted Rectangle …………………………………326
Magnitude of G(?) …………………………………………………..326
Phase of G(?) …………………………………………………..326
6.5.8 Impulse Series - The Line Spectrum …………………………………………………..328
6.5.9 Shifted Impulse δ(? ? ?o) …………………………………………………..328
6.5.10 Fourier Transform of a Periodic Signal …………………………………………………..329
6.6 Fourier Transform Pairs …………………………………………………..332
6.6.1 The Illustrated Fourier Transform …………………………………………………..334
6.7 Rapid Changes vs. High Frequencies …………………………………………………..335
6.7.1 Derivative Theorem …………………………………………………..336
6.7.2 Integration Theorem …………………………………………………..338
6.8 Conclusions …………………………………………………..339
6.9 Worked Problems …………………………………………………..340
6.10 End of Chapter Exercises …………………………………………………..342
Bibliography …………………………………………………..348
7 Practical Fourier Transforms 349
7.1 Introduction …………………………………………………..349
Learning Objectives …………………………………………………..349
7.2 Convolution: Time and Frequency …………………………………………………..350
The Logarithm Domain …………………………………………………..350
7.2.1 Simplifying the Convolution Integral ……………………………………351
7.3 Transfer Function of a Linear System ………………………………………356
7.3.1 Impulse Response: The Frequency Domain ……………………………357
7.3.2 Frequency Response Curve …………………………………………………..359
7.4 Energy in Signals: Parseval's Theorem for the Fourier Transform ………………360
7.4.1 Energy Spectral Density …………………………………………………..361
7.5 Data Smoothing and the Frequency Domain ………………………………363
7.6 Ideal Filters …………………………………………………..365
7.6.1 The Ideal Low-Pass Filter is not Causal …………………………………………………..368
7.7 A Real Low-Pass Filter …………………………………………………..370
MATLAB Example 1: First Order Filter ………………………………………………….. 376
7.8 The Modulation Theorem …………………………………………………..378
7.8.1 A Voice Privacy System …………………………………………………..379
Spectral Inversion …………………………………………………..380
7.9 Periodic Signals and the Fourier Transform ……………………384
7.9.1 The Impulse Train …………………………………………………..385
7.9.2 General Appearance of Periodic Signals …………………………………………………..387
7.9.3 The Fourier Transform of a Square wave ………………………………387
Changing the Pulse Train Appearance …………………………………………389
7.9.4 Other Periodic Waveforms …………………………………………………..390
7.10 The Analog Spectrum Analyzer …………………………………………………..390
7.11 Conclusions …………………………………………………..392
7.12 Worked Problems …………………………………………………..392
7.13 End of Chapter Exercises …………………………………………………..397
Bibliography …………………………………………………..406
8 The Laplace Transform 407
Learning Objectives …………………………………………………..408
8.1 Introduction …………………………………………………..408
8.2 The Laplace Transform …………………………………………………..409
8.2.1 The Frequency Term ejwt …………………………………………………..411
8.2.2 The Exponential Term eσt …………………………………………………..412
8.2.3 The s-domain …………………………………………………..412
8.3 Exploring the s-domain …………………………………………………..413
8.3.1 Poles and Zeros …………………………………………………..414
8.3.2 A Pole at the origin …………………………………………………..414
8.3.3 Decaying Exponential …………………………………………………..417
8.3.4 A Sinusoid …………………………………………………..420
8.3.5 A Decaying Sinusoid …………………………………………………..422
8.3.6 An Unstable System …………………………………………………..424
8.4 Visualizing the Laplace Transform ……………………………………………424
8.4.1 First Order Low-pass Filter …………………………………………………..425
8.4.2 Pole Position Determines Frequency Response ………………………428
8.4.3 Second Order Low-pass Filter …………………………………………………..431
8.4.4 Two-Sided Laplace Transform …………………………………………………..435
8.4.5 The Bode Diagram …………………………………………………..437
8.4.6 Calculating the Laplace Transform …………………………………………………..442
8.4.7 System Analysis in MATLAB …………………………………………………..443
8.5 Properties of the Laplace Transform …………………………………………………..447
8.6 Differential Equations …………………………………………………..448
8.6.1 Solving a Differential Equation …………………………………………………..449
8.6.2 Transfer Function as Differential Equations ……………………………………………452
8.7 Laplace Transform Pairs …………………………………………………..452
8.7.1 The Illustrated Laplace Transform …………………………………………………..454
8.8 Circuit Analysis with the Laplace Transform ………………………………………455
8.8.1 Voltage Divider …………………………………………………..457
8.8.2 A First-Order Low-pass Filter ………………………………………………….. 458
8.8.3 A First-Order High-pass Filter …………………………………………………..462
8.8.4 A Second Order Filter …………………………………………………..464
8.9 State Variable Analysis …………………………………………………..475
8.9.1 State Variable Analysis - First Order System ………………………………475
8.9.2 First Order State Space Analysis with MATLAB …………………………….478
8.9.3 State Variable Analysis - Second Order System ……………………………480
8.9.4 Matrix Form of the State Space Equations ……………………………………482
8.9.5 Second Order State Space Analysis with MATLAB …………………………484
8.9.6 Differential Equation …………………………………………………..485
8.9.7 State Space and Transfer Functions with MATLAB …………………………487
8.10 Conclusions …………………………………………………..489
8.11 Worked Problems …………………………………………………..490
8.12 End of Chapter Exercises …………………………………………………..495
Bibliography …………………………………………………..505
9 Discrete Signals 507
9.1 Introduction …………………………………………………..507
Learning Objectives …………………………………………………..507
9.2 Discrete Time vs. Continuous Time Signals …………………………………508
9.3 A Discrete Time Signal …………………………………………………..509
9.3.1 Digital Signal Processing …………………………………………………..510
9.3.2 A Periodic Discrete Time Signal …………………………………………………..513
9.4 Data Collection and Sampling Rate …………………………………………………..513
9.4.1 The Selection of a Sampling Rate …………………………………………………..513
9.4.2 Bandlimited Signal …………………………………………………..515
9.4.3 Theory of Sampling …………………………………………………..516
9.4.4 The Sampling Function …………………………………………………..516
9.4.5 Recovering a Waveform from Samples ……………………………………518
9.4.6 A Practical Sampling Signal ……………………………………………519
9.4.7 Minimum Sampling Rate …………………………………………………..519
9.4.8 Nyquist Sampling Rate …………………………………………………..521
9.4.9 The Nyquist Sampling Rate is a Theoretical Minimum ……………………………523
9.4.10 Sampling Rate and Alias Frequency …………………………………………………..525
9.4.11 Practical Aliasing …………………………………………………..528
9.4.12 Analysis of Aliasing ………………………………………………….. 531
9.4.13 Anti-Alias Filter …………………………………………………533
9.5 Introduction to Digital Filtering …………………………………………534
9.5.1 Impulse Response Function …………………………………………535
9.5.2 A Discrete Response Function ……………………………………… 535
9.5.3 Delay Blocks are a Natural Consequence of Sampling ………..539
9.5.4 General Digital Filtering …………………………………………………540
9.5.5 The Fourier Transform of Sampled Signals …………………………..542
9.5.6 The Discrete Fourier Transform (DFT) …………………………………543
9.5.7 A Discrete Fourier Series …………………………………………………..546
9.5.8 Computing the Discrete Fourier Transform (DFT) ………548
9.5.9 The Fast Fourier Transform (FFT) ……………………548
9.6 Illustrative Examples ………………………………………550
The FFT (fft) and Inverse FFT (ifft) ……………………………553
9.6.1 FFT and Sample Rate ……………………………………556
9.6.2 Practical DFT Issues ……………………………………556
9.7 Filtering Application with MATLAB ……………………563
9.7.1 Fourier Analysis ……………………………………………563
9.7.2 System Response …………………………………………564
9.7.3 Check Calculation ……………………………………… 565
9.8 Conclusions …………………………………………...566
9.9 Worked Problems ……………………………………567
9.10 End of Chapter Exercises …………………………572
Bibliography …………………………………………………..579
10 The z-Transform 581
10.1 Introduction ……………………………………………581
Learning Objectives …………………………………………581
10.2 The z-Transform …………………………………………………..582
10.2.1 Fourier Transform, Laplace Transform, z-transform ………………582
10.2.2 Defnition of the z-Transform ………………………………………585
10.2.3 The z-Plane and the Fourier Transform ………………………………………587
10.3 Calculating the z-Transform ……………………………………588
10.3.1 Unit Step u[n] …………………………………………………..590
10.3.2 Exponential an u[n] …………………………………………………592
10.3.3 Sinusoid cos(nωo) u[n] and sin(nωo) u[n] ………………………594
10.3.4 Differentiation …………………………………………………..596
10.3.5 The Effect of Sampling Rate …………………………………………………..597
10.4 A Discrete Time Laplace Transform ………………………………598
10.5 Properties of the z-Transform ………………………………………602
10.6 z-Transform Pairs …………………………………………………..602
10.7 Transfer Function of a Discrete Linear System ……………………603
10.8 MATLAB Analysis with the z-transform ………………………………603
10.8.1 First Order Low-pass Filter …………………………………604
10.8.2 Pole-zero Plot …………………………………………………..606
10.8.3 Bode diagram …………………………………………………..608
10.8.4 Impulse Response …………………………………………………..609
10.8.5 Calculating Frequency Response ………………………………..610
10.8.6 Pole Position Determines Frequency Response …………….611
10.9 Digital Filtering - FIR Filter ……………………………………………612
10.9.1 A One Pole FIR Filter …………………………………………………..614
10.9.2 A Two Pole FIR Filter …………………………………………………..615
10.9.3 Higher Order FIR Filters …………………………………………………..616
10.10Digital Filtering - IIR Filter …………………………………………………..621
10.10.1A One Pole IIR Filter …………………………………………………..621
10.10.2 IIR vs. FIR …………………………………………………..624
10.10.3 Higher Order IIR Filters …………………………………………………..626
10.10.4 Combining FIR and IIR Filters …………………………………………627
10.11Conclusions …………………………………………………..627
10.12Worked Problems …………………………………………………..628
10.13End of Chapter Exercises …………………………………………………..631
11 Communication Systems 637
Learning Objectives …………………………………………………..637
11.1 Introduction …………………………………………………..638
11.1.1 A Baseband Signal m(t) …………………………………………………..638
11.1.2 The need for a Carrier Signal …………………………………………………..639
11.1.3 A Carrier Signal c(t) …………………………………………………..640
11.1.4 Modulation Techniques …………………………………………………..640
11.1.5 The Radio Spectrum …………………………………………………..642
11.2 Amplitude Modulation …………………………………………………..644
11.2.1 Double Sideband Transmitted Carrier - (DSB-TC) …………………………645
11.2.2 Demodulation of AM DSB-TC Signals …………………………………650
11.2.3 Graphical Analysis …………………………………………………..651
11.2.4 AM Demodulation - Diode Detector …………………………………………654
11.2.5 Examples of Diode Detection …………………………………………………657
11.3 Suppressed Carrier Transmission …………………………………………………658
11.3.1 Demodulation of Single Sideband Signals ……………………………………659
11.3.2 Percent Modulation and Overmodulation ……………………………………662
11.4 Superheterodyne Receiver …………………………………………………..662
11.4.1 An Experiment with Intermediate Frequency ………………………666
11.4.2 When Receivers become Transmitters …………………………….668
11.4.3 Image Frequency …………………………………………………..668
11.4.4 Beat Frequency Oscillator ……………………………………….670
11.5 Digital Communications …………………………………………………..670
11.5.1 Modulation Methods …………………………………………………..672
11.5.2 Morse Code …………………………………………………..672
11.5.3 Amplitude Shift Keying (ASK) …………………………………………………..676
11.5.4 Frequency Shift Keying (FSK) …………………………………………………..677
11.6 Phase Shift Keying (PSK) …………………………………………………..678
11.6.1 Differential Coding …………………………………………………..679
11.6.2 Quadrature Amplitude Modulation (QAM) …………………………………………681
11.7 Spread Spectrum Systems …………………………………………………..683
11.7.1 Introduction …………………………………………………..683
11.7.2 Pseudorandom Noise …………………………………………………..686
11.7.3 Encoding Bits in DSSS …………………………………………693
11.7.4 Spectral Properties of a Pseudo-Random Sequence …693
11.7.5 Code Division Multiple Access (CDMA) …………695
11.8 Conclusions …………………………………………………..700
11.9 Worked Problems ……………………………………700
11.10End of Chapter Exercises …………………………703
Bibliography …………………………………………………..706
A Reference Tables 707
A.1 Fourier Transform …………………………………………707
A.1.1 Fourier Transform Theorems …………………………707
A.2 Laplace Transform …………………………………………709
A.2.1 Laplace Transform Theorems ………………………..709
A.3 z-Transform …………………………………………………..711
A.3.1 z-Transform Theorems ………………………………….711
B The Illustrated Fourier Transform 713
C The Illustrated Laplace Transform 725
D The Illustrated z-Transform 735
E MATLAB Reference Guide 743
E.1 De_ning Signals ………………………………………………743
E.1.1 MATLAB Variables ………………………………………..743
E.1.2 The Time Axis ……………………………………………..744
E.1.3 Common Signals…………………………………………. 745
E.2 Complex Numbers ………………………………………….745
E.3 Plot Commands ………………………………………………747
E.4 Signal Operations …………………………………………… 748
E.5 Defining Systems ………………………………………………. 749
E.5.1 System Definition …………………………………….750
E.5.2 System Analysis ……………………………………...752














