logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Problems of Fracture Mechanics and Fatigue: A Solution Guide

Problems of Fracture Mechanics and Fatigue: A Solution Guide (Hardcover, 2003)

E. E. Gdoutos, C. A. Rodopoulos, J. R. Yates (엮은이)
  |  
Kluwer Academic Pub
2003-11-30
  |  
279,350원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 229,060원 -18% 0원 11,460원 217,600원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
로딩중

e-Book

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

해외직구

책 이미지

Problems of Fracture Mechanics and Fatigue: A Solution Guide

책 정보

· 제목 : Problems of Fracture Mechanics and Fatigue: A Solution Guide (Hardcover, 2003) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 파괴역학
· ISBN : 9781402017599
· 쪽수 : 618쪽

목차

Problem 1: Airy Stress Function Method.- Problem 2: Westergaard Method for a Crack Under Concentrated Forces.- Problem 3: Westergaard Method for a Periodic Array of Cracks Under Concentrated Forces.- Problem 4: Westergaard Method for a Periodic Array of Cracks Under Uniform Stress.- Problem 5: Calculation of Stress Intensity Factors by the Westergaard Method.- Problem 6: Westergaard Method for a Crack Under Distributed Forces.- Problem 7: Westergaard Method for a Crack Under Concentrated Forces.- Problem 8: Westergaard Method for a Crack Problem.- Problem 9: Westergaard Method for a Crack Subjected to Shear Forces.- Problem 10: Calculation of Stress Intensity Factors by Superposition.- Problem 11: Calculation of Stress Intensity Factors by Integration.- Problem 12: Stress Intensity Factors for a Linear Stress Distribution.- Problem 13: Mixed-Mode Stress Intensity Factors in Cylindrical Shells.- Problem 14: Photoelastic Determination of Stress Intensity Factor KI.- Problem 15: Photoelastic Determination of Mixed-Mode Stress Intensity Factors KI and KII.- Problem 16: Application of the Method of Weight Function for the Determination of Stress Intensity Factors.- Problem 17: Approximate Determination of the Crack Tip Plastic Zone for Mode-I and Mode-II Loading.- Problem 18: Approximate Determination of the Crack Tip Plastic Zone for Mixed-Mode Loading.- Problem 19: Approximate Determination of the Crack Tip Plastic Zone According to the Tresca Yield Criterion.- Problem 20: Approximate Determination of the Crack Tip Plastic Zone According to a Pressure Modified Mises Yield Criterion.- Problem 21: Crack Tip Plastic Zone According to Irwin's Model.- Problem 22: Effective Stress Intensity factor According to Irwin's Model.- Problem 23: Plastic Zone at the Tip of a Semi-Infinite Crack According to the Dugdale Model.- Problem 24: Mode-III Crack Tip Plastic Zone According to the Dugdale Model.- Problem 25: Plastic Zone at the Tip of a Penny-Shaped Crack According to the Dugdale Model.- Problem 26: Calculation of Strain Energy Release Rate from Load - Displacement - Crack Area Equation.- Problem 27: Calculation of Strain Energy Release Rate for Deformation Modes I, II and III.- Problem 28: Compliance of a Plate with a Central Crack.- Problem 29: Strain Energy Release Rate for a Semi-Infinite Plate with a Crack.- Problem 30: Strain Energy Release Rate for the Short Rod Specimen.- Problem 31: Strain Energy Release Rate for the Blister Test.- Problem 32: Calculation of Stress Intensity Factors Based on Strain Energy Release Rate.- Problem 33: Critical Strain Energy Release Rate.- Problem 34: Experimental Determination of Critical Stress Intensity Factor KIc.- Problem 35: Experimental Determination of KIc.- Problem 36: Crack Stability.- Problem 37: Stable Crack Growth Based on the Resistance Curve Method.- Problem 38: Three-Point Bending Test in Brittle Materials.- Problem 39: Three-Point Bending Test in Quasi Brittle Materials.- Problem 40: Double-Cantilever Beam Test in Brittle Materials.- Problem 41: Design of a Pressure Vessel.- Problem 42: Thermal Loads in a Pipe.- Problem 43: J-integral for an Elastic Beam Partly Bonded to a Half-Plane.- Problem 44: J-integral for a Strip with a Semi-Infinite Crack.- Problem 45: J-integral for Two Partly Bonded Layers.- Problem 46: J-integral for Mode-I.- Problem 47: J-integral for Mode III.- Problem 48: Path Independent Integrals.- Problem 49: Stresses Around Notches.- Problem 50: Experimental Determination of JIc from J - Crack Growth Curves.- Problem 51: Experimental Determination of J from Potential Energy - Crack Length Curves.- Problem 52: Experimental Determination of J from Load-Displacement Records.- Problem 53: Experimental Determination of J from a Compact Tension Specimen.- Problem 54: Validity of JIc and KIc Tests.- Problem 55: Critical Crack Opening Displacement.- Problem 56: Crack Opening Displacement Design Methodology.- Problem 57: Critical Fracture Stress of a Plate with an Inclin

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책