logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Optimal Inventory Modeling of Systems: Multi-Echelon Techniques

Optimal Inventory Modeling of Systems: Multi-Echelon Techniques (Hardcover, 2, 2004)

Craig C. Sherbrooke (지은이)
Kluwer Academic Pub
662,040원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
542,870원 -18% 0원
27,150원
515,720원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Optimal Inventory Modeling of Systems: Multi-Echelon Techniques
eBook 미리보기

책 정보

· 제목 : Optimal Inventory Modeling of Systems: Multi-Echelon Techniques (Hardcover, 2, 2004) 
· 분류 : 외국도서 > 경제경영 > 관리
· ISBN : 9781402078491
· 쪽수 : 392쪽
· 출판일 : 2004-04-30

목차

Dedication. List of Figures. List of Tables. List of Variables. Preface. Acknowledgements. 1: Introduction. 1.1. Chapter Overview. 1.2. The System Approach. 1.3. The Item Approach. 1.4. Repairable vs. Consumable Items. 1.5. 'Physics' of the Problem. 1.6. Multi-Item Optimization. 1.7. Multi-Echelon Optimization. 1.8. Multi-Indenture Optimization. 1.9. Field Test Experience. 1.10. The Item Approach Revisited. 1.11. The System Approach Revisited. 1.12. Summary. 1.13. Problems. 2: Single-Site Inventory Model For Repairable Items. 2.1. Chapter Overview. 2.2. Mean and Variance. 2.3. Poisson Distribution and Notation. 2.4. Palm's Theorem. 2.5. Justification of Independent Repair Times and Constant Demand. 2.6. Stock Level. 2.7. Item Performance Measures. 2.8. System Performance Measures. 2.9. Single-Site Model. 2.10. Marginal Analysis. 2.11. Convexity. 2.12. Mathematical Solution of Marginal Analysis. 2.13. Separability. 2.14. Availability. 2.15. Summary. 2.16. Problems. 3: Metric: A Multi-Echelon Model. 3.1. Chapter Overview. 3.2. METRIC Model Assumptions. 3.3. METRIC Theory. 3.4. Numerical Example. 3.5. Convexification. 3.6. Summary of the METRIC Optimization Procedure. 3.7. Availability. 3.8. Summary. 3.9. Problems. 4: Demand Processes And Demand Prediction. 4.1. Chapter Overview. 4.2. Poisson Process. 4.3. Negative Binomial Distribution. 4.4. Multi-Indenture Problem. 4.5. Multi-Indenture Example. 4.6. Variance of the Number of Units in the Pipeline. 4.7. Multi-Indenture Example Revisited. 4.8. Demand Rates that Vary with Time. 4.9. Bayesian Analysis. 4.10. Objective Bayes. 4.11. Bayesian Analysis in the Case of Initial Estimate Data. 4.12. James-Stein Estimation. 4.13. James-Stein Estimation Experiment. 4.14. Comparison of Bayes and James-Stein. 4.15. Demand Prediction Experiment Design. 4.16. Demand Prediction Experiment Results. 4.17. Random Failure versus Wear-out Processes. 4.18. Goodness-of-Fit Tests. 4.19. Summary. 4.20. Problems. 5: Vari-METRIC: A Multi-Echelon, Multi-Indenture Model. 5.1. Chapter Overview. 5.2. Mathematical Preliminary: Multi-Echelon Theory. 5.3. Definitions. 5.4. Demand Rates. 5.5. Mean and Variance for the Number of LRUs in Depot Repair. 5.6. Mean and Variance for the Number of SRUs in Base Repair or Resupply. 5.7. Mean and Variance for the Number of LRUs in Base Repair or Resupply. 5.8. Availability. 5.9. Optimization. 5.10. Generalization of the Resupply Time Assumptions. 5.11. Generalization of the Poisson Demand Assumption. 5.12. Common Items. 5.13. Consumable and Partially Repairable Items. 5.14. Numerical Example. 5.15. Item Criticality Diff

저자소개

Craig C. Sherbrooke (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책