logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Least Squares Data Fitting with Applications

Least Squares Data Fitting with Applications (Hardcover)

Per Christian Hansen, Pereyra, V죅tor (지은이)
Johns Hopkins Univ Pr
154,100원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
126,360원 -18% 0원
6,320원
120,040원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Least Squares Data Fitting with Applications
eBook 미리보기

책 정보

· 제목 : Least Squares Data Fitting with Applications (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 응용수학
· ISBN : 9781421407869
· 쪽수 : 328쪽
· 출판일 : 2013-01-01

목차

Preface
Symbols and Acronyms
Chapter 1. The Linear Data Fitting Problem
1.1. Parameter estimation, data approximation
1.2. Formulation of the data fitting problem
1.3. Maximum likelihood estimation
1.4. The residuals and their properties
1.5. Robust regression
Chapter 2. The Linear Least Squares Problem
2.1. Linear least squares problem formulation
2.2. The QR factorization and its role
2.3. Permuted QR factorization
Chapter 3. Analysis of Least Squares Problems
3.1. The pseudoinverse
3.2. The singular value decomposition
3.3. Generalized singular value decomposition
3.4. Condition number and column scaling
3.5. Perturbation analysis
Chapter 4. Direct Methods for Full-Rank Problems
4.1. Normal equations
4.2. LU factorization
4.3. QR factorization
4.4. Modifying least squares problems
4.5. Iterative refinement
4.6. Stability and condition number estimation
4.7. Comparison of the methods
Chapter 5. Direct Methods for Rank-Deficient Problems
5.1. Numerical rank
5.2. Peters-Wilkinson LU factorization
5.3. QR factorization with column permutations
5.4. UTV and VSV decompositions
5.5. Bidiagonalization
5.6. SVD computations
Chapter 6. Methods for Large-Scale Problems
6.1. Iterative versus direct methods
6.2. Classical stationary methods
6.3. Non-stationary methods, Krylov methods
6.4. Practicalities: preconditioning and stopping criteria
6.5. Block methods
Chapter 7. Additional Topics in Least Squares
7.1. Constrained linear least squares problems
7.2. Missing data problems
7.3. Total least squares (TLS)
7.4. Convex optimization
7.5. Compressed sensing
Chapter 8. Nonlinear Least Squares Problems
8.1. Introduction
8.2. Unconstrained problems
8.3. Optimality conditions for constrained problems
8.4. Separable nonlinear least squares problems
8.5. Multiobjective optimization
Chapter 9. Algorithms for Solving Nonlinear LSQ Problems
9.1. Newton's method
9.2. The Gauss-Newton method
9.3. The Levenberg-Marquardt method
9.4. Additional considerations and software
9.5. Iteratively reweighted LSQ algorithms for robust data fitting problems
9.6. Variable projection algorithm
9.7. Block methods for large-scale problems
Chapter 10. Ill-Conditioned Problems
10.1. Characterization
10.2. Regularization methods
10.3. Parameter selection techniques
10.4. Extensions of Tikhonov regularization
10.5. Ill-conditioned NLLSQ problems
Chapter 11. Linear Least Squares Applications
11.1. Splines in approximation
11.2. Global temperatures data fitting
11.3. Geological surface modeling
Chapter 12. Nonlinear Least Squares Applications
12.1. Neural networks training
12.2. Response surfaces, surrogates or proxies
12.3. Optimal design of a supersonic aircraft
12.4. NMR spectroscopy
12.5. Piezoelectric crystal identification
12.6. Travel time inversion of seismic data
Appendix A: Sensitivity Analysis
A.1. Floating-point arithmetic
A.2. Stability, conditioning and accuracy
Appendix B: Linear Algebra Background
B.1. Norms
B.2. Condition number
B.3. Orthogonality
B.4. Some additional matrix properties
Appendix C: Advanced Calculus Background
C.1. Convergence rates
C.2. Multivariable calculus
Appendix D: Statistics
D.1. Definitions
D.2. Hypothesis testing
References
Index

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책