logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

An Introduction to Statistics and Data Analysis for Bioinformatics Using R

An Introduction to Statistics and Data Analysis for Bioinformatics Using R (Hardcover, 1st)

Sorin Draghici (지은이)
Taylor & Francis
146,450원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

An Introduction to Statistics and Data Analysis for Bioinformatics Using R
eBook 미리보기

책 정보

· 제목 : An Introduction to Statistics and Data Analysis for Bioinformatics Using R (Hardcover, 1st) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 생명과학 > 생물학
· ISBN : 9781439892367
· 쪽수 : 506쪽
· 출판일 : 2014-12-30

목차

IntroductionBioinformatics ? an emerging discipline Introduction to RIntroduction to R The basic concepts Data structures and functionsOther capabilitiesThe R environment Installing BioconductorGraphics Control structures in RProgramming in R vs C/C++/Java Bioconductor: Principles and Illustrations Overview The portal Some explorations and analyses Elements of Statistics Introduction Some basic concepts Elementary statistics Degrees of freedom Probabilities Bayes’ theoremTesting for (or predicting) a disease Probability Distributions Probability distributions Central limit theorem Are replicates useful? Basic Statistics in R Introduction Descriptive statistics in R Probabilities and distributions in R Central limit theorem Statistical Hypothesis Testing Introduction The framework Hypothesis testing and significance "I do not believe God does not exist" An algorithm for hypothesis testing Errors in hypothesis testing Classical Approaches to Data Analysis Introduction Tests involving a single sample Tests involving two samples Analysis of Variance (ANOVA) Introduction One-way ANOVA Two-way ANOVA Quality control Linear Models in R Introduction and model formulation Fitting linear models in R Extracting information from a fitted model: testing hypotheses and making predictions Some limitations of the linear models Dealing with multiple predictors and interactions in the linear models, and interpreting model coefficients Experiment Design The concept of experiment design Comparing varieties Improving the production process Principles of experimental design Guidelines for experimental design A short synthesis of statistical experiment designs Some microarray specific experiment designs Multiple ComparisonsIntroductionThe problem of multiple comparisonsA more precise argument Corrections for multiple comparisonsCorrections for multiple comparisons in R Analysis and Visualization ToolsIntroductionBox plots Gene pies Scatter plotsVolcano plots Histograms Time series Time series plots in R Principal component analysis (PCA)Independent component analysis (ICA) Cluster AnalysisIntroduction Distance metricClustering algorithms Partitioning around medoids (PAM) Biclustering Clustering in R Machine Learning Techniques Introduction Main concepts and definitions Supervised learning Practicalities using R The Road Ahead

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책