logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Video Analytics Using Deep Learning: Building Applications with Tensorflow, Keras, and Yolo

Video Analytics Using Deep Learning: Building Applications with Tensorflow, Keras, and Yolo (Paperback)

Nikhil Singh, Charan Puvvala, Aakash Kag (지은이)
Apress
67,210원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Video Analytics Using Deep Learning: Building Applications with Tensorflow, Keras, and Yolo
eBook 미리보기

책 정보

· 제목 : Video Analytics Using Deep Learning: Building Applications with Tensorflow, Keras, and Yolo (Paperback) 
· 분류 : 외국도서 > 컴퓨터 > 컴퓨터 공학
· ISBN : 9781484237922
· 쪽수 : 265쪽
· 출판일 : 2020-01-13

목차

1. Deep learning : Goal: Learn basic manipulation like assigning variables, matrix multiplication, transpose of matrix, resizing vectors and matrices etc. Pages: 20 1. Introduction to tensorflow/keras 1.a. Defining Tensors 1.b. Basic operation using tensorflow 1.c. Session logging and Variables 1.d. Tensor Board 1.e. Basic operation using keras 2. Introduction to neural network Goal : Solve the problem beyond conventional algorithmic approach. In this chapter we will learn about the procedure that is used to compute gradients of a loss function (Backpropagation). We will learn new classification technique called neural network. We will also learn various loss function and optimization methods that helps to measure the quality of parameters and will help to find how much output is agreed with ground truth. Pages : 50 2.a. Loss function 2.b. Optimization (SGD, RMSPROP, ADAM, Quantum Gradient Descent) 2.c. Backpropagation 2.d. MultiLayer Perceptron 3.e. Lets Build: A classifier on Fashion MNIST to classify the clothes 3. Introduction to convolution neural network Goal: We will learn new pattern recognition techniques mainly for images that can be used for classification and segmentation. Pages: 25 FC Vs CNN 3.a. Convolution Layer 3.b. Activation Layer 3.c. Pooling Layer 3.d. Dropout 3.e. Let's classify/recognise object using CNN etc.. 4. CNN architecture Goal : To learn various deep learning framework with different depth of layers and size of filter and its use case to increase the efficiency depending on requirements. Pages: 75 4.a. AlexNet 4.b. Google LeNet 4.c. VGG16 (OxfordNet) architecture 4.d. Let's build model like Face recognition, Emotion analysis using above mentioned architecture etc.. 5. Image captioning and Generative models Goal : To learn the action from figure. In this chapter we will learn how to get textual description of an image.In this chapter we will also learn Unsupervised learning and in particular Generative models. Given sample X and Y as input and output we will learn way to sample these X, Y pairs means from input data we can generate different types of probabilistic data. We will learn to generate new image, given input image Pages: 90 5.a. RNN 5.b. LSTM 5.c. Let's find what picture tells us (Gesture Recognition or Traffic vision). 5.d. Density estimation and its types (how data is distributed, identifying hidden structure of data) 5.e. Generative adversarial network 5.f. Pixel RNN/CNN 5.g. Variational Autoencoders 5.h. With given input let's generate random faces using generative model

저자소개

Nikhil Singh (지은이)    정보 더보기
펼치기
Charan Puvvala (지은이)    정보 더보기
펼치기
Aakash Kag (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책