책 이미지

책 정보
· 분류 : 외국도서 > 컴퓨터 > 하드웨어 > 일반
· ISBN : 9781484251737
· 쪽수 : 568쪽
· 출판일 : 2019-11-30
목차
Chapter 1: Foundational items
Shannon's Coding Theorem
Bayes rules
Cox axioms
Chapter 2: Modeling fundamentals:
Factor analysis
K-Means
Hidden Markov models (HMM)
State space models (SSM)
Boltzmann machinesChapter 3: Algorithmic approaches
Expectation-maximization (EM)
Method-of-moments
Belief propagation
Forward/backward prorogationKalman filters
Laplacian approximations
Markov chains
Particle filters
Chapter 4: Supervised/unsupervised learning
Linear regression
Logistic regression
Perceptions
Artificial neural networks (ANN):
Autoencoders
Deep belief networks
Hebbian learningGenerative adversarial networks (GAN)
Self-organizing maps
Gaussian processes
Support vector machines (SVM)Blind signal separation techniques:
Independent component analysis (ICA)
Principal component analysis (PCA)
Non-negative matrix factorization
Singular value decomposition (SVD)
Chapter 5: Reinforcement learning
Bellman's equation
Value iterations and functions
Lambda functions
Policy iterations
Q-learning