logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Beginning Anomaly Detection Using Python-Based Deep Learning: With Keras and Pytorch

Beginning Anomaly Detection Using Python-Based Deep Learning: With Keras and Pytorch (Paperback)

Suman, Sridhar Alla (지은이)
Apress
96,160원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
78,850원 -18% 0원
3,950원
74,900원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
알라딘 판매자 배송 1개 60,000원 >
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Beginning Anomaly Detection Using Python-Based Deep Learning: With Keras and Pytorch
eBook 미리보기

책 정보

· 제목 : Beginning Anomaly Detection Using Python-Based Deep Learning: With Keras and Pytorch (Paperback) 
· 분류 : 외국도서 > 컴퓨터 > 인공지능(AI)
· ISBN : 9781484251768
· 쪽수 : 416쪽
· 출판일 : 2019-10-11

목차

Chapter 1:  What is Anomaly Detection?
Chapter Goal: Introduce reader to the task of anomaly detection, where it's used, why it's important, as well as the different types of “anomaly detection” there are. 
No of pages: 30
Sub -Topics
1. What is an anomaly
2. Use cases today
3. Different types of anomalies


Chapter 2:  Traditional Methods of Anomaly Detection
Chapter Goal: Introduce reader to a couple high performing traditional methods of anomaly detection in Scikit-Learn. Evaluation metrics are performed on both (will be set as the benchmark of comparison for the deep learning models later on)
No of pages: 50
Sub - Topics
1.   Isolation Forest
2.   One class support vector machine
3.   Mahalanobis distance based anomaly detection
  

Chapter 3: Intro to Keras and PyTorch
Chapter Goal: Introduce reader to deep learning and how to build, train a basic model in both Keras and in PyTorch. Additionally, perform evaluation metrics on both. Also, discuss the various deep learning models that can be applied to semi-supervised and unsupervised anomaly detection.
No of pages : 40
Sub - Topics:  
1.What is deep learning?
2. Intro to Keras: simple classifier model
3. Intro to PyTorch: simple classifier model
4. How can we apply deep learning to anomaly detection? 

Chapter 4: Autoencoders
Chapter Goal: Introduce reader to several autoencoders and how they can perform anomaly detection in both semi-supervised and unsupervised anomaly detection.
No of pages: 40
Sub - Topics: 
1. What are autoencoders?
2. Basic autoencoder
3. Denoising autoencoder
4. Variational autoencoder
5. Summary of autoencoders as a model

Chapter 5: Boltzmann Machines
Chapter Goal: Introduce reader to a restricted Boltzmann machine, deep Boltzmann machine, and a deep belief network.
No of pages: 30
Sub - Topics: 
1. What is a Boltzmann machine?
2. RBM
3. DBM
4. DBN
5. Summary of the models

Chapter 6: Time-Series Anomaly Detection
Chapter Goal: Introduce reader to RNNs and LSTMs for time series anomaly detection.
No of pages:
Sub - Topics: 30
1. What is a time series and how do we detect anomalies in that?
2. What is an RNN
3. RNN application
4. What is an LSTM?
5. LSTM application 
6. Summary of the models

Chapter 7: Temporal Convolutional Network
Chapter Goal: Introduce reader to the TCN and how it can be used in anomaly detection.
No of pages: 30
Sub - Topics: 
1. What is a TCN?
2. Encoder-Decoder TCN
3. Dilated TCN
4. Summary of models

Chapter 8: Practical Use Cases of Anomaly Detection
Chapter Goal: Illustrate common use cases.
No of pages: 30
Sub - Topics: 
1. Use cases

Appendix A: Introduction to Keras
Chapter Goal: Introduce reader to the Keras 
No of pages: 30
Sub - Topics: 
1. What is a Keras?
2. How to use it

Appendix B: Introduction to PyTorch
Chapter Goal: Introduce reader to the PyTorch
No of pages: 30
Sub - Topics: 
1. What is a PyTorch?
2. How to use it


저자소개

Suman (지은이)    정보 더보기
펼치기
Sridhar Alla (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책