logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Practical Machine Learning with Aws: Process, Build, Deploy, and Productionize Your Models Using Aws

Practical Machine Learning with Aws: Process, Build, Deploy, and Productionize Your Models Using Aws (Paperback)

Himanshu Singh (지은이)
Apress
128,220원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
105,140원 -18% 0원
5,260원
99,880원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Practical Machine Learning with Aws: Process, Build, Deploy, and Productionize Your Models Using Aws
eBook 미리보기

책 정보

· 제목 : Practical Machine Learning with Aws: Process, Build, Deploy, and Productionize Your Models Using Aws (Paperback) 
· 분류 : 외국도서 > 컴퓨터 > 데이터베이스 관리 > 일반
· ISBN : 9781484262214
· 쪽수 : 241쪽
· 출판일 : 2020-11-24

목차

Part-I ? Introduction to Amazon Web Services (100 Pages)


Chapter 1: AWS Concepts and Technologies
Introduction to services like S3, EC2, Identity Access Management, Roles, Load Balancer, Cloud Formation, etc.

Chapter 2: AWS Billing and Pricing
Understanding AWS pricing, billing, group and tagging, etc.

Chapter 3: AWS Cloud Security
Description about AWS compliance and artifacts, AWS Shield, Cloudwatch, Cloud Trail, etc.

Part-II ? Machine Learning in AWS (300 Pages)

Chapter 4: Data Collection and Preparation
Concepts include AWS data stores, migration and helper tools. It also includes pre-processing concepts like encoding, feature engineering, missing values removal, etc.

Chapter 5: Data Modelling and Algorithms
In this section, we will talk about all the algorithms that AWS supports, including regression, clustering, classification, image, and text analytics, etc. We will then look at Sagemaker service and how to make models using it.

Chapter 6: Data Analysis and Visualization
This chapter talks about the relationship between variables, data distributions, the composition of data, etc.

Chapter 7: Model Evaluation and Optimization
This chapter talks about the monitoring of training jobs, evaluating the model accuracy, and fine-tuning models.

Chapter 8: Implementation and Operation
In this chapter, we’ll look at the deployment of models, security, and monitoring.

Chapter 9: Building a Machine Learning Workflow
In this chapter, we’ll look at the machine learning workflow in AWS .

Part-IV ? Projects (100 Pages)

Chapter 10: Project ? Building skills with Alexa

Chapter 11: Project - Time series forecasting using Amazon forecast

Chapter 12: Project ? Modelling and deployment using XGBoost in Sagemaker

Chapter 13: Text classification using Amazon comprehend and textract

Chapter 14: Building a complete project pipeline


이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책