logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Practical Tensorflow.Js: Deep Learning in Web App Development

Practical Tensorflow.Js: Deep Learning in Web App Development (Paperback)

Juan Rivera (지은이)
Apress
103,720원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
85,050원 -18% 0원
4,260원
80,790원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Practical Tensorflow.Js: Deep Learning in Web App Development
eBook 미리보기

책 정보

· 제목 : Practical Tensorflow.Js: Deep Learning in Web App Development (Paperback) 
· 분류 : 외국도서 > 컴퓨터 > 인공지능(AI)
· ISBN : 9781484262726
· 쪽수 : 303쪽
· 출판일 : 2020-09-19

목차

Chapter 1

Welcome to TensorFlow.js

Headings

  • ●  What is TensorFlow.js?

  • ●  TensorFlow.js API

    ○ Tensors
    ○ Operations ○ Variables

● How to install it

● Use cases

Chapter 2

Building your First Model

Headings

  • ●  Building a logistic regression classification model

  • ●  Building a linear regression model

  • ●  Doing unsupervised learning with k-means

  • ●  Dimensionality reduction and visualization with t-SNE and d3.js

  • ●  Our first neural network

    Chapter 3

    Create a drawing app to predict handwritten digits using

    Convolutional Neural Networks and MNIST

    Headings

  • ●  Convolutional Neural Networks

  • ●  The MNIST Dataset

  • ●  Design the model architecture

  • ●  Train the model

  • ●  Evaluate the model

  • ●  Build the drawing app

  • ●  Integrate the model within the app

Chapter 4

"Move your body!" A game featuring PoseNet, a pose estimator model

Headings

  • ●  What is PoseNet?

  • ●  Loading the model

  • ●  Interpreting the result

  • ●  Building a game around it

    Chapter 5

    Detect yourself in real-time using an object detection model trained in

    Google Cloud's AutoML

    Headings

  • ●  TensorFlow Object Detection API

  • ●  Google Cloud's AutoML

  • ●  Training the model

  • ●  Exporting the model and importing it in TensorFlow.js

  • ●  Building the webcam app

    Chapter 6

    Transfer Learning with Image Classifier and Voice Recognition

    Headings

  • ●  What's Transfer Learning?

  • ●  MobileNet and ImageNet (MobileNet is the base model and ImageNet is the training set)

  • ●  Transferring the knowledge

  • ●  Re-training the model

  • ●  Testing the model with a video

    Chapter 7

    Censor food you do not like with pix2pix, Generative Adversarial

    Networks, and ml5.js

    Headings

  • ●  Introduction to Generative Adversarial Networks

  • ●  What is image translation?

  • ●  Training your custom image translator with pix2pix

  • ●  Deploying the model with ml5.js

    Chapter 8

    Detect toxic words from a Chrome Extension using a Universal

    Sentence Encoder

    Headings

  • ●  Toxicity classifier

  • ●  Training the model

  • ●  Testing the model

  • ●  Integrating the model in a Chrome Extension

    Chapter 9

    Time Series Analysis and Text Generation with Recurrent Neural

    Networks

    Headings

  • ●  Recurrent Neural Networks

  • ●  Example 1: Building an RNN for time series analysis

  • ●  Example 2: Building an RNN to generate text

    Chapter 10

    Best practices, integrations with other platforms, remarks and final

    words

    Headings

  • ●  Best practices

  • ●  Integration with other platforms

  • ●  Materials for further practice

  • ●  Conclusion

저자소개

Juan Rivera (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책