logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Data Science Solutions on Azure: Tools and Techniques Using Databricks and Mlops

Data Science Solutions on Azure: Tools and Techniques Using Databricks and Mlops (Paperback)

Julian Soh, Priyanshi Singh (지은이)
Apress
76,540원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
62,760원 -18% 0원
3,140원
59,620원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Data Science Solutions on Azure: Tools and Techniques Using Databricks and Mlops
eBook 미리보기

책 정보

· 제목 : Data Science Solutions on Azure: Tools and Techniques Using Databricks and Mlops (Paperback) 
· 분류 : 외국도서 > 컴퓨터 > 프로그래밍 > 마이크로소프트 프로그래밍
· ISBN : 9781484264041
· 쪽수 : 285쪽
· 출판일 : 2020-12-19

목차

Part I - Introduction to Data Science and its rise to prominence

Chapter 1              Data Science in the modern enterprise 

                                What is Data Science

                                The Data Scientists' tools and lingo

                                Ethics and ethical AI

                                Significance of Data Science in organizations

                                Case Studies of applied Data Science

                               

Chapter 2              Most important Statistical Tehniques in Data Science     

                                Top Statistical Tehniques Data Scientists need to know

                                   Supervised Learning

                                   Unsupervised Learning

                                Regression/Classification/ Forecasting

                                   Bayesian method

                                   Time series analysis

                                   Linear regression

                                   Sampling methods

                                Reinforcement Learning

Part 2 - Machine Learning in Microsoft Azure                                                     

Chapter 3              Basics of data preparation and data engineering                               

                                Ingesting disparate data sources              

                                Preparing data for analysis          

                                Data Exploration              

                                Feature Engineering      

Chapter 4              Introducing Azure Machine Learning                      

                                AzureML- DataStores/ Datasets               

                                Azure ML Compute/CLusters/inference/batch-realtime               

                                Azure ML Service- Training and Building

                                Azure ML Service- Deploying     

                                Azure ML Service- Pipelines       

                                Azure ML Studio/Designer          

                                Azure Automated Machine Learning (AutoML) 

                                Hyperparameter Training            

                                Azure ML- Security         

                                Case Study         

Part 3 - Azure Databricks                                                              

Chapter 5              Spark and Big Data                          

                                Spark and Hadoop          

                                What is Big Data?            

                                Why Spark is the platform of choice for Big Data               

                                Challenges with Big Data              

                                               

Chapter 6              Azure Databricks  Basics                          

                                What is Azure Databricks             

                                Azure Databricks from the Data Engineers' perspective 

                                Azure Databricks from the Data Scientists' perspective                                                  

Chapter 7              Azure Databricks                                                             

                                Deploying the Azure Databricks workspace         

                                Creating and Managing Clusters               

                                Creating and managing users and groups             

                                Managing Databricks Notebooks             

                                Using Databricks Notebooks      

                                DBFS     

                                Connecting to ADLS       

                                Sample Notebook(s)     

Part 4 - Operationalizing Data Science                                                                    

Chapter 8              Machine Learning Operations                   

                                Operationalization concepts and DevOps             

                                MLOps in Azure               

                                MLFlow in Azure Databricks       

                                Git                                                         

Chapter 9              Practical ML                       

                                Introducing use cases in the different industries              

                                Democratizing AI through ML    


저자소개

Priyanshi Singh (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책