logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes

Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes (Paperback, 2)

아르준 파네사 (지은이)
Apress
111,790원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
91,660원 -18% 0원
4,590원
87,070원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes
eBook 미리보기

책 정보

· 제목 : Machine Learning and AI for Healthcare: Big Data for Improved Health Outcomes (Paperback, 2) 
· 분류 : 외국도서 > 컴퓨터 > 인공지능(AI)
· ISBN : 9781484265369
· 쪽수 : 407쪽
· 출판일 : 2020-12-16

목차

Chapter 1:  Introduction: Learning for Healthcare  
Chapter Goal: Introduction to book and topics to be covered 
No of pages 10
Sub -Topics
1. What is AI, data science, machine and deep learning
2. The case for learning from data
3. Evolution of big data/learning/Analytics 3.0
4. Practical examples of how data can be used to learn within healthcare settings
5. Conclusion

Chapter 2: Big Data 
Chapter Goal: To understand data required for learning and how to ensure valid data for outcome veracity
No of pages: 35
Sub - Topics
1. What is data, sources of data and what types of data is there? little vs big data and the advantages/disadvantages with such data sets. Structured vs. unstructured data.
2. Massive data - management and complexities
3. The key aspects required of data, in particular, validity to ensure that only useful and relevant information
4. How to use big data for learning (use cases)
5. Turning data into information ? how to collect data that can be used to improve health outcomes and examples of how to collect such data
6. Challenges faced as part of the use of big data
7. Data governance

Chapter 3: What is Machine learning?
Chapter Goal: To introduce machine learning, identify/demystify types of learning and provide information of popular algorithms and their applications
No of pages: 45
Sub - Topics:  
1. Introduction ? what is learning?
2. Differences/similarities between: what is AI, data science, machine learning, deep learning
3. History/evolution of learning
4. Learning algorithms ? popular types/categories, complex examples of machine learning models, applications and their mathematical basis
5. Software(s) used for learning
6. Code samples

Chapter 4: Machine Learning in Healthcare
Chapter Goal: A comprehensive understanding of key concepts related to learning systems and the practical application of machine learning within healthcare settings 
No of pages: 50
Sub - Topics: 
1. Understanding Tasks, Performance and Experience to optimize algorithms and outcomes 
2. Identification of algorithms to be used in healthcare applications for: predictive analysis, perspective analysis, inference, modeling, probability estimation, NLP etc and common uses
3. Real-time analysis and analytics
4. Machine learning best practices
5. Neural networks, ANNs, deep learning
6. Code samples

Chapter 5: Evaluating Learning for Intelligence
Chapter Goal: To understand how to evaluate learning algorithms, how to choose the best evaluation technique/approach for analysis
No of pages: 30
1. How to evaluate machine learning systems 
2. Methodologies for evaluating outputs
3. Improving your intelligence
4. Advanced analytics
5. Real-world examples of evaluations

Chapter 6: Ethics of intelligence
Chapter Goal: To understand the hurdles that must be addressed in AI/machine learning and also overcome on both a micro- and macro-level to enable enhanced health intelligence 
No of pages: 25
1. The benefits of big data and machine learning
2. The disadvantages of big data and machine learning ? who owns the data, distributing the data, should patients/people be told what the results are (e.g. data demonstrates risk of cancer)
3. Data for good, or data for bad?
4. Topics that require addressing in order to ensure ease, efficiency and safety of outputs
5. Do we need to govern our intelligence?
6. Example: COVID-19 response and data/privacy sharing

Chapter 7: The Future of Healthcare
Chapter Goal: Outline the direction of AI and machine/deep learning within healthcare and the future applications of intelligent systems
No of pages: 30
1. Evidence-based medicine
2. Patient data as the evidence base
3. Healthcare disruption fueling innovation
4. How generalisations on precise audiences enables personalized medicine
5. Impact of data and IoT on realizing personalized medicine
6. AI ethics
7. Conclusion

Chapter 8: Case studies
Chapter Goal: Real world applications of AI and machine/deep learning in healthcare
No of pages: 50
1. Real world case studies of organizations implementing machine learning and the challenges, methodologies, algorithms and analytics used to determine optimal performance/outcomes 
2. COVID-related case studies: how data was used, how rapid interventions were deployed, agile development methodolodies



저자소개

아르준 파네사 (지은이)    정보 더보기
당뇨 디지털 미디어(DDM, Diabetes Digital Media)의 공동 설립자로, 세계에서 가장 큰 당뇨병 커뮤니티를 운영하며, 근거 중심의 디지털 솔루션을 제공하고자 노력해 왔다. 임페리얼 칼리지 런던의 컴퓨팅과 인공지능 학과에서 학사 학위를 받았다. 수년에 걸쳐 빅데이터와 빅데이터가 사용자에게 미치는 영향을 다뤘다. 이 경험을 바탕으로 전 세계의 환자, 의료 기관, 정부 등에게 정밀 의학 헬스케어를 제공할 수 있도록 빅데이터와 머신러닝을 이용해 지 능적이고 근거 중심의 디지털 헬스 솔루션 개발을 주도하고 있다. 수많은 상을 수상했고, BBC, 포브스(Forbes), 데일리 메일(Daily Mail), 타임스(The Times), ITV 등에 소개되는 등 국제적으로 명성이 높다. 현재 셰필드대학교 인포메이션 스쿨의 고문을 맡고 있다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책