logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Statistical Learning with Sparsity: The Lasso and Generalizations

Statistical Learning with Sparsity: The Lasso and Generalizations (Hardcover)

트레버 해이스티, Martin Wainwright, Rob Tibshirani (지은이)
CRC Press
228,370원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
187,260원 -18% 0원
9,370원
177,890원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Statistical Learning with Sparsity: The Lasso and Generalizations
eBook 미리보기

책 정보

· 제목 : Statistical Learning with Sparsity: The Lasso and Generalizations (Hardcover) 
· 분류 : 외국도서 > 경제경영 > 통계
· ISBN : 9781498712163
· 쪽수 : 367쪽
· 출판일 : 2015-05-07

목차

Introduction

The Lasso for Linear Models
Introduction
The Lasso Estimator
Cross-Validation and Inference
Computation of the Lasso Solution
Degrees of Freedom
Uniqueness of the Lasso Solutions
A Glimpse at the Theory
The Nonnegative Garrote
q Penalties and Bayes Estimates
Some Perspective

Generalized Linear Models
Introduction
Logistic Regression
Multiclass Logistic Regression
Log-Linear Models and the Poisson GLM
Cox Proportional Hazards Models
Support Vector Machines
Computational Details and glmnet

Generalizations of the Lasso Penalty
Introduction
The Elastic Net
The Group Lasso
Sparse Additive Models and the Group Lasso
The Fused Lasso
Nonconvex Penalties

Optimization Methods
Introduction
Convex Optimality Conditions
Gradient Descent
Coordinate Descent
A Simulation Study
Least Angle Regression
Alternating Direction Method of Multipliers
Minorization-Maximization Algorithms
Biconvexity and Alternating Minimization
Screening Rules

Statistical Inference
The Bayesian Lasso
The Bootstrap
Post-Selection Inference for the Lasso
Inference via a Debiased Lasso
Other Proposals for Post-Selection Inference

Matrix Decompositions, Approximations, and Completion
Introduction
The Singular Value Decomposition
Missing Data and Matrix Completion
Reduced-Rank Regression
A General Matrix Regression Framework
Penalized Matrix Decomposition
Additive Matrix Decomposition

Sparse Multivariate Methods
Introduction
Sparse Principal Components Analysis
Sparse Canonical Correlation Analysis
Sparse Linear Discriminant Analysis
Sparse Clustering

Graphs and Model Selection
Introduction
Basics of Graphical Models
Graph Selection via Penalized Likelihood
Graph Selection via Conditional Inference
Graphical Models with Hidden Variables

Signal Approximation and Compressed Sensing
Introduction
Signals and Sparse Representations
Random Projection and Approximation
Equivalence between ℓ0 and ℓ1 Recovery

Theoretical Results for the Lasso
Introduction
Bounds on Lasso ℓ2-error
Bounds on Prediction Error
Support Recovery in Linear Regression
Beyond the Basic Lasso

Bibliography

Author Index

Index

Bibliographic Notes and Exercises appear at the end of each chapter.

저자소개

Rob Tibshirani (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책