logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets

Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets (Paperback)

Bernard Kress (지은이)
SPIE Press
111,310원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
91,270원 -18% 0원
4,570원
86,700원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets
eBook 미리보기

책 정보

· 제목 : Optical Architectures for Augmented-, Virtual-, and Mixed-Reality Headsets (Paperback) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 광학
· ISBN : 9781510634336
· 쪽수 : 270쪽
· 출판일 : 2020-04-30

목차

  • 1 Introduction
  • Word of Caution for the Rigorous Optical Engineer
  • 2 Maturity Levels of the AR/VR/MR/Smart-Glasses Markets
  • 3 The Emergence of MR as the Next Computing Platform
  • 3.1 Today's Mixed-Reality Check
  • 4 Keys to the Ultimate MR Experience
  • 4.1 Wearable, Vestibular, Visual, and Social Comfort
  • 4.2 Display Immersion
  • 4.3 Presence
  • 5 Human Factors
  • 5.1 The Human Visual System
  • 5.1.1 Line of sight and optical axis
  • 5.1.2 Lateral and longitudinal chromatic aberrations
  • 5.1.3 Visual acuity
  • 5.1.4 Stereo acuity and stereo disparity
  • 5.1.5 Eye model
  • 5.1.6 Specifics of the human-vision FOV
  • 5.2 Adapting Display Hardware to the Human Visual System
  • 5.3 Perceived Angular Resolution, FOV, and Color Uniformity
  • 6 Optical Specifications Driving AR/VR Architecture and Technology Choices
  • 6.1 Display System
  • 6.2 Eyebox
  • 6.3 Eye Relief and Vertex Distance
  • 6.4 Reconciling the Eye Box and Eye Relief
  • 6.5 Field of View
  • 6.6 Pupil Swim
  • 6.7 Display Immersion
  • 6.8 Stereo Overlap
  • 6.9 Brightness: Luminance and Illuminance
  • 6.10 Eye Safety Regulations
  • 6.11 Angular Resolution
  • 6.12 Foveated Rendering and Optical Foveation
  • 7 Functional Optical Building Blocks of an MR Headset
  • 7.1 Display Engine
  • 7.1.1 Panel display systems
  • 7.1.2 Increasing the angular resolution in the time domain
  • 7.1.3 Parasitic display effects: screen door, aliasing, motion blur, and Mura effects
  • 7.1.4 Scanning display systems
  • 7.1.5 Diffractive display systems
  • 7.2 Display Illumination Architectures
  • 7.3 Display Engine Optical Architectures
  • 7.4 Combiner Optics and Exit Pupil Expansion
  • 8 Invariants in HMD Optical Systems, and Strategies to Overcome Them
  • 8.1 Mechanical IPD Adjustment
  • 8.2 Pupil Expansion
  • 8.3 Exit Pupil Replication
  • 8.4 Gaze-Contingent Exit Pupil Steering
  • 8.5 Exit Pupil Tiling
  • 8.6 Gaze-Contingent Collimation Lens Movement
  • 8.7 Exit Pupil Switching
  • 9 Roadmap for VR Headset Optics
  • 9.1 Hardware Architecture Migration
  • 9.2 Display Technology Migration
  • 9.3 Optical Technology Migration
  • 10 Digital See-Through VR Headsets
  • 11 Free-Space Combiners
  • 11.1 Flat Half-Tone Combiners
  • 11.2 Single Large Curved-Visor Combiners
  • 11.3 Air Birdbath Combiners
  • 11.4 Cemented Birdbath–Prism Combiners
  • 11.5 See-Around Prim Combiners
  • 11.6 Single Reflector Combiners for Smart Glasses
  • 11.7 Off-Axis Multiple Reflectors Combiners
  • 11.8 Hybrid Optical Element Combiners
  • 11.9 Pupil Expansion Schemes in MEMS-Based Free-Space Combiners
  • 11.10 Summary of Free-Space Combiner Architectures
  • 11.11 Compact, Wide-FOV See-Through Shell Displays
  • 12 Freeform TIR Prism Combiners
  • 12.1 Single-TIR-Bounce Prism Combiners
  • 12.2 Multiple-TIR-Bounce Prism Combiners
  • 13 Manufacturing Techniques for Free-Space Combiner Optics
  • 13.1 Ophthalmic Lens Manufacturing
  • 13.2 Freeform Diamond Turning and Injection Molding
  • 13.3 UV Casting Process
  • 13.4 Additive Manufacturing of Optical Elements
  • 13.5 Surface Figures for Lens Parts Used in AR Imaging
  • 14 Waveguide Combiners
  • 14.1 Curved Waveguide Combiners and Single Exit Pupil
  • 14.2 Continuum from Flat to Curved Waveguides and Extractor Mirrors
  • 14.3 One-Dimensional Eyebox Expansion
  • 14.4 Two-Dimensional Eyebox Expansion
  • 14.5 Display Engine Requirements for 1D or 2D EPE Waveguides
  • 14.6 Choosing the Right Waveguide Coupler Technology
  • 14.6.1 Refractive/reflective coupler elements
  • 14.6.2 Diffractive/holographic coupler elements
  • 14.6.3 Achromatic coupler technologies
  • 14.6.4 Summary of waveguide coupler technologies
  • 15 Design and Modeling of Optical Waveguide Combiners
  • 15.1 Waveguide Coupler Design, Optimization, and Modeling
  • 15.1.1 Coupler/light interaction model
  • 15.1.2 Increasing FOV by using the illumination spectrum
  • 15.1.3 Increasing FOV by optimizing grating coupler parameters
  • 15.1.4 Using dynamic couplers to increase waveguide combiner functionality
  • 15.2 High-Level Waveguide-Combiner Design
  • 15.2.1 Choosing the waveguide coupler layout architecture
  • 15.2.2 Building a uniform eyebox
  • 15.2.3 Spectral spread compensation in diffractive waveguide combiners
  • 15.2.4 Field spread in waveguide combiners
  • 15.2.5 Focus spread in waveguide combiners
  • 15.2.6 Polarization conversion in diffractive waveguide combiners
  • 15.2.7 Propagating full-color images in the waveguide combiner over a maximum FOV
  • 15.2.8 Waveguide-coupler lateral geometries
  • 15.2.9 Reducing the number of plates for full-color display over the maximum allowed FOV
  • 16 Manufacturing Techniques for Waveguide Combiners
  • 16.1 Wafer-Scale Micro- and Nano-Optics Origination
  • 16.1.1 Interference lithography
  • 16.1.2 Multilevel, direct-write, and grayscale optical lithography
  • 16.1.3 Proportional ion beam etching
  • 16.2 Wafer-Scale Optics Mass Replication
  • 17 Smart Contact Lenses and Beyond
  • 17.1 From VR Headsets to Smart Eyewear and Intra-ocular Lenses
  • 17.2 Contact Lens Sensor Architectures
  • 17.3 Contact Lens Display Architectures
  • 17.4 Smart Contact Lens Fabrication Techniques
  • 17.5 Smart Contact Lens Challenges
  • 18 Vergence-Accommodation Conflict Mitigation
  • 18.1 VAC Mismatch in Fixed-Focus Immersive Displays
  • 18.1.1 Focus rivalry and VAC
  • 18.2 Management of VAC for Comfortable 3D Visual Experience
  • 18.2.1 Stereo disparity and the horopter circle
  • 18.3 Arm's-Length Display Interactions
  • 18.4 Focus Tuning through Display or Lens Movement
  • 18.5 Focus Tuning with Micro-Lens Arrays
  • 18.6 Binary Focus Switch
  • 18.7 Varifocal and Multifocal Display Architectures
  • 18.8 Pin Light Arrays for NTE Display
  • 18.9 Retinal Scan Displays for NTE Display
  • 18.10 Light Field Displays
  • 18.11 Digital Holographic Displays for NTE Display
  • 19 Occlusions
  • 19.1 Hologram Occlusion
  • 19.2 Pixel Occlusion, or ""Hard-Edge Occlusion""
  • 19.3 Pixelated Dimming, or ""Soft-Edge Occlusion""
  • 20 Peripheral Display Architectures
  • 21 Vision Prescription Integration
  • 21.1 Refraction Correction for Audio-Only Smart Glasses
  • 21.2 Refraction Correction in VR Headsets
  • 21.3 Refraction Correction in Monocular Smart Eyewear
  • 21.4 Refraction Correction in Binocular AR Headsets
  • 21.5 Super Vision in See-Through Mode
  • 22 Sensor Fusion in MR Headsets
  • 22.1 Sensors for Spatial Mapping
  • 22.2.1 Stereo cameras
  • 22.2.2 Structured-light sensors
  • 22.2.3 Time-of-flight sensors
  • 22.3 Head Trackers and 6DOF
  • 22.4 Motion-to-Photon Latency and Late-Stage Reprojection
  • 22.5 SLAM and Spatial Anchors
  • 22.6 Eye, Gaze, Pupil, and Vergence Trackers
  • 22.7 Hand-Gesture Sensors
  • 22.8 Other Critical Hardware Requirements
  • Conclusion

저자소개

Bernard Kress (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책