logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Silicon Carbide: Materials, Processing and Devices

Silicon Carbide: Materials, Processing and Devices (Hardcover)

Zhe Chuan Feng, Jian H. Zhao (엮은이)
  |  
CRC Pr I Llc
2003-10-30
  |  
445,870원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 365,610원 -18% 0원 18,290원 347,320원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
로딩중

e-Book

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

해외직구

책 이미지

Silicon Carbide: Materials, Processing and Devices

책 정보

· 제목 : Silicon Carbide: Materials, Processing and Devices (Hardcover) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 생화학
· ISBN : 9781591690238
· 쪽수 : 416쪽

목차

PrefaceChapter 1 Epitaxial growth of high-quality silicon carbide - Fundamentals and recent progress --- T. Kimoto and H. Matsunami* (Kyoto University)(1) Introduction(2) Step-controlled Epitaxy of SiC2.1 Chemical vapor deposition2.2 Step-controlled epitaxy2.3 Surface morphology(3) Growth mechanism of step-controlled epitaxy3.1 Rate-determining process3.2 Off-angle dependence of growth rate 3.3 Temperature dependence of growth rate3.4 Prediction of step-flow growth condition3.4.1 Surface diffusion model3.4.2 Desorption flux3.4.3 Critical supersaturation ratio3.4.4 Critical growth conditions3.4.5 Surface diffusion length3.4.6 Prediction of growth mode(4) Behaviors of steps in SiC epitaxy4.1 Nucleation and step motion4.2 Step bunching(5) Characterization of epitaxial layers5.1 Structural characterization5.2 Optical characterization5.3 Electrical characterization(6) Doping of impurities6.1 Donor doping6.2 Acceptor doping(7) Recent progress7.1 Practical epitaxial growth7.2 Epitaxial growth on (11-20)(8) ConcludionsReferencesChapter 2 Surface characterization of 6H-SiC reconstructions-- Kian-Ping LOH, Eng-Soon TOK, and Andrew T. S. WEE* (National University of Singapore)1. INTRODUCTION2. Sample preparation methods for characterization of surface reconstruction3. Reflection High Energy Electron Diffraction (RHEED)3.1 RHEED system set-up3.2 RHEED analysis of surface reconstruction on 6H-SiC (0001)3.3 6H-SiC (0001)-(1´1) reconstruction3.4 6H-SiC (0001)-(3´3) reconstruction3.5 6H-SiC(0001)-(6×6) reconstruction3.6 6H-SiC(0001)-(Ö3´Ö3R ) reconstruction3.7 1´1 graphite-R on 1´1 SiC3.8 RHEED Rocking beam analysis 4. Scanning Tunneling Microscopy (STM)4.1 Surface Morphological Evolution of 6H-SiC(0001)4.2 6H-SiC (0001)-(3´3) reconstruction4.3 6H-SiC (0001)-(6´6) reconstruction5. X-ray Photoelectron Spectroscopy (XPS)6. Auger electron spectroscopy (AES)7. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS)8. ConclusionsAcknowledgementsReferencesChap ter 3 Exciton and defect photoluminescence from SiC-- T. Egilsson, I.G. Ivanov, N.T. Son, A. Henry, J.P. Bergman, and E. Janzén*(Linköping University)1. Introduction2. Experimental techniques3. Some properties of sic4. Electronic structure4.1. Excitons4.2. Internal transitions at impurity ions5. Free excitons6. Bound excitons6.1. D-and A-BEs6.2. I-BEs7. Internal transitionsReferencesChapter 4 DEEP LEVEL DEFECTS IN SiC MATERIALS AND DEVICES-- A. A. Lebedev* (A. F. Ioffe Physics & Technology Institute)Introduction.1. Parameters of deep centers in SiC.1.1. Major doping impurities in SiC1.2. Other types of impurity centers in SiC1.3. Intrinsic defects in silicon carbide 1.4. Radiation doping of SiC2. Influence of impurities on the growth of epitaxial SiC layers2.1. Heteropolytype SiC epitaxy2.2. Site-competition epitaxy of SiC3. Deep centers and recombination processes in SiC.3.1. A deep centers and radiates recombination in 6H- and 4H-SiC p-n structures.3.2. Influence of deep centers on the diffusion length and lifetime in 6H-SiC p-n structures3.3. Deep centers and the negative temperature coefficient for the breakdown voltage in SiC p-n-structuresConclusions ReferencesChapter 5 Ion-implantation in SiC-- Mulpuri V. Rao (George Mason University)(1) Introduction(2) Implant Profile Range Statistics(3) Surface Morphology of Annealed Material(4) Thermal Stability of Implant Depth Profiles(5) Lattice Quality - Rutherford Back-scattering (RBS)(6) Electrical Activation of Donor Implants(7) Electrical Activation of Acceptor Implants(8) Electrical Characteristics of Compensation Implants(9) Other Applications of Ion-implantation(10) Implant Masking(11) Ion-implantation for Device Applications(12) ConclusionsReferencesChapter 6 OHMIC CONTACTS TO SiC FOR HIGH POWER AND HIGH TEMPERATURE DEVICE APPLICATIONS-- M. W. Cole * and P. C. Joshi (U.S. Army Research Laboratory)1. INTRODUCTION2. OHMIC CONTACTS TO SiC2.1. Theory2.2. Approach2.3. Considerations and Critical Requirements3. OHMIC CONTACTS TO n-SiC3.1. Ti and Ti Based Metallizations3.2. W and W Based Metallizations3.3. Ta and Ta Based Metallizations3.4. Re Contacts3.5. Pt Contacts3.6. Cr and Cr Based Metallizations3.7. Mo and Co Silicide Metallizations3.8. Ni and Ni Based Metallizations4. OHMIC CONTACTS TO p-SiC4.1. Al and Al Based Metallizations4.2. Ti and Ti Based Metallizations4.3. Si Based Metallizations4.4. W and W Based Metallizations4.5. Pd Contacts4.6. Pt Contacts4.7. Ta Contacts4.8. Os, Mo, and Co Based Metallizations4.9. B Based Metallizations5. ConclusionsReferencesChapter 7 SiC Avalanche Breakdown and Avalanche Photodiodes-- Feng Yan* and Jian H. Zhao (Rutgers University)1. INTRODUCTION2. AVALANCHE BREAKDOWN3. ACHIEVING AVALANCHE BREAKDOWN3.1 Defects detrimental to the avalanche breakdown of SiC3.2 Yield of devices free of defects3.3 Edge termination of SiC devices3.3.1 Positive bevel with a bevel angle as low as 2o3.3.2 Multi-step junction termination extension (MJTE) 4. DETERMINATION OF IMPACT IONIZATION RATES4.1 Multiplication factors4.2 Determination of impact ionization rates from multiplication factors5. IMPACT IONIZATION RATES5.1 Impact ionization rates of 6H-SiC5.2 Impact ionization rates of 4H-SiC5.3 Criteria of avalanche breakdown5.4 Critical field and breakdown voltage of 6H-SiC pn junction5.5 Critical field and breakdown voltage of 4H-SiC pn junction6. 4H-SIC AVALANCHE PHOTODIODES6.1 Noise performance of APDs6.2 Practical consideration in SiC APD design6.3 4H-SiC APDs edge terminated by the positive bevel6.4 Reach-through 4H-SiC APDs terminated by MJTE6.5 4H-SiC APD linear arrays9. ConclusionsReferencesChapter 8 Porous SiC Technology-- Stephen E. Saddow* (University of South Florida), Marina Mynbaeva (Ioffe Institute) and Michael F. MacMillan (Sterling Semiconductor)1 Introduction2 Porous SiC Technology - early works on p-type substrates2.1 UV Luminescence and LEDS. 2.2 Infrared reflectance of porous SiC layers2.3 Comparison of Porous SiC Reflectance to Bulk SiC Reflectance 2.4 Comparison of Data to Model Reflectance 2.5 Discussion3 N-type Porous SiC Technology - early works 3.1 Porous SiC from n-type bulk materials3.2 Porous layers based on epitaxial n-SiC films3.3 Optical properties of n-type PSC 3.4 Porous n-type SiC - wafers technology 3.5 Selected properties of PSC4 Epitaxial growth on Porous SiC4.1 SiC epitaxial growth on porous SiC substrates - A First Report4.2 SiC Defect Density Reduction by Epitaxy on Porous Surfaces - LTPL Observations4.3 Structural Characterization of SiC Epitaxial Layers Grown on PSC - SWBXT and TEM4.4 Growth of SiC Epitaxial Layers on Porous Surfaces of Varying Porosity4.5 Scanning Acoustic Microscopy in Porous SiC4.6 Comparison of Schottky Diode Performance on PSC and Conventional SiC 4.6.1 Schottky diode results and discussion 4.6.2 Schottky Diode Conclusion5 Conclusions References

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책