logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Multilevel Analysis for Applied Research: It's Just Regression!

Multilevel Analysis for Applied Research: It's Just Regression! (Hardcover)

(Methodology In The Social Sciences)

Robert Bickel (지은이)
Guilford Pubn
198,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Multilevel Analysis for Applied Research: It's Just Regression!
eBook 미리보기

책 정보

· 제목 : Multilevel Analysis for Applied Research: It's Just Regression! (Hardcover) (Methodology In The Social Sciences)
· 분류 : 외국도서 > 인문/사회 > 사회과학 > 방법론
· ISBN : 9781593854294
· 쪽수 : 355쪽
· 출판일 : 2007-04-01

목차



1. Broadening the Scope of Regression Analysis

1.1.Chapter Introduction
1.2. Why Use Multilevel Regression Analysis?
1.3. Limitations of Available Instructional Material
1.4. Multilevel Regression Analysis in Suggestive Historical Context
1.5. It’s Just Regression under Specific Circumstances
1.6. Jumping the Gun to a Multilevel Illustration
1.7. Summing Up
1.8. Useful Resources


2. The Meaning of Nesting

2.1. Chapter Introduction
2.2. Nesting Illustrated: School Achievement and Neighborhood Quality
2.3. Nesting Illustrated: Comparing Public and Private Schools
2.4. Cautionary Comment on Residuals in Multilevel Analysis
2.5. Nesting and Correlated Residuals
2.6. Nesting and Effective Sample Size
2.7. Summing Up
2.8. Useful Resources


3. Contextual Variables

3.1. Chapter Introduction
3.2. Contextual Variables and Analytical Opportunities
3.3. Contextual Variables and Independent Observations
3.4. Contextual Variables and Independent Observations: A Nine-Category Dummy Variable
3.5. Contextual Variables, Intraclass Correlation, and Misspecification
3.6. Contextual Variables and Varying Parameter Estimates
3.7. Contextual Variables and Covariance Structure
3.8. Contextual Variables and Degrees of Freedom
3.9. Summing Up
3.10. Useful Resources


4. From OLS to Random Coefficient to Multilevel Regression

4.1. Chapter Introduction
4.2. Simple Regression Equation
4.3. Simple Regression with an Individual-Level Variable
4.4. Multiple Regression: Adding a Contextual Variable
4.5. Nesting (Again!) with a Contextual Variable
4.6. Is There a Problemwith Degrees of Freedom?
4.7. Is There a Problem with Dependent Observations?
4.8. Alternatives to OLS Estimatorspt; FONT-FAMILY: Arial; mso-bidi-font-weight: bold"4.9. The Conceptual Basis of ML Estimators
4.10. Desirable Properties of REML Estimators
4.11. Applying REML Estimators with Random Coefficient Regression Models
4.12. Fixed Components and Random Components
4.13. Interpreting Random Coefficients: Developing a Cautionary Comment
4.14. Subscript Conventions
4.15. Percentage of Variance Explained for Random Coefficient and Multilevel Models
4.16. Grand-Mean Centering
4.17. Grand-Mean Centering, Group-Mean Centering, and Raw Scores Compared
4.18. Summing Up
4.19. Useful Resources


5. Developing the Multilevel Regression Model

5.1. Chapter Introduction
5.2. From Random Coefficient Regression to Multilevel Regression
5.3. Equations for a Random Intercept and Random Slope
5.4. Subscript Conventions for Two-Level Models: Gamma Coefficients
5.5. The Full Equation
5.6. An Implied Cross-Level Interaction Term
5.7. Estimating a Multilevel Model: The Full Equation
5.8. A Multilevel Model with a Random Slope and Fixed Slopes at Level One
5.9. Complexity and Confusion: Too Many Random Components
5.10. Interpreting Multilevel Regression Equations
5.11. Comparing Interpretations of Alternative Specifications
5.12. What Happened to the Error Term?
5.13. Summing Up
5.14. Useful Resources


6. Giving OLS Regression Its Due

6.1. Chapter Introduction
6.2. An Extended Exercise with County-Level Data
6.3. Tentative Specification of an OLS Regression Model
6.4. Preliminary Regression Results
6.5. Surprise Results and Possible Violation of OLS Assumptions
6.6. Curvilinear Relationships: YBUSH by XBLACK, XHISPANIC, XNATIVE
6.7. Quadratic Functional Form
6.8. A Respecified OLS Regression Model
6.9. Interpreting Quadratic Relationships
6.10. Nonadditivity and Interaction Terms
6.11. Further Respecification of the Regression Model
6.12. Clarifying OLS Interaction Effects
6.13. Results for the Respecified OLS Regression Equation for County-Level Data
6.14. Summing Up
6.15. Useful Resources


7. Does Multilevel Regression Have Anything to Contribute?

7.1. Chapter Introduction
7.2. Contextual Effects in OLS Regression
7.3. Respecification and Changing Functional Form
7.4. Addressing the Limitations of OLS
7.5. Counties Nested within States: Intraclass Correlation
7.6. Multilevel Regression Model Specification: Learning from OLS
7.7. Interpreting the Multilevel Regression Equation for County-Level Data
7.8. Knowing When to Stop
7.9. Summing Up
7.10. Useful Resources


8. Multilevel Regression Models with Three Levels

8.1. Chapter Introduction
8.2. Students Nested within Schools and within Districts
8.3. Level One: Students
8.4. Level Two: Schools
8.5. Level Three: Districts
8.6. Notation and Subscript Conventions for Specifying a Three-Level Model
8.7. Estimating a Three-Level Random Coefficient Model
8.8. Adding a Second Level-One Predictor
8.9. Adding a Level-Two Predictor
8.10. Adding a Second Predictor at Level Two and a Predictor at Level Three
8.11. Discretionary Use of Same-Level Interaction Terms
8.12. Ongoing Respecification of a Three-Level Model
8.13. A Level-Two Random Slope at Level Three
8.14. Summing Up
8.15. Useful Resources


9. Familiar Measures Applied to a Three-Level Model

9.1. Chapter Introduction
9.2. The Intraclass Correlation Coefficient Revisited
9.3. Percentage of Variance Explained in a Level-One Dependent Variable
9.4. Other Summary Measures Used with Multilevel Regression
9.5. Summing Up
9.6. Useful Resources


10. Determining Sample Sizes for Multilevel Regression

10.1. Chapter Introduction
10.2. Interest in Sample Size in OLS and Multiple Regression
10.3. Sample Size: Rules of Thumb and Data Constraints
10.4. Estimation and Inference for Unstandardized Regression Coefficients
10.5. More Than One Level of Analysis Means More Than One Sample Size
10.6. An Individual-Level OLS Analysis with a Large Sample
10.7. A Group-Level OLS Analysis with a Small Sample
10.8. Standard Errors: Corrected and Uncorrected, Individual and Group Levels
10.9. When Output Is Not Forthcoming!
10.10. Sample Sizes and OLS-Based Commonsense in Multilevel Regression
10.11. Sample Size Generalizations Peculiar to Multilevel Regression
10.12. Level-One Sample Size and Level-Two Statistical Power
10.13. The Importance of Sample Size at Higher Levels
10.14. Summing Up
10.15. Useful Resources


11. Multilevel Regression Growth Models

11.1. Chapter Introduction
11.2. Analyzing Longitudinal Data: Pretest?Posttest
11.3. Nested Measures: Growth in Student Vocabulary Achievement
11.4. Nested Measures: Growth in NCLEX Pass Rates
11.5. Developing Multilevel Regression Growth Models
11.6. Summary Statistics with Growth Models
11.7. Sample Sizes
11.8. The Multilevel Regression Growth Model Respecified
11.9. The Multilevel Regression Growth Model: Further Respecification
11.10. Residual Covariance Structures
11.11. Multilevel Regression Growth Models with Three Levels
11.12. Nonlinear Growth Curves
11.13. NCLEX Pass Rates with a Time-Dependent Predictor
11.14. Summing Up
11.15. Useful Resources

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책