logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Fracture Mechanics 1 : Analysis of Reliability and Quality Control

Fracture Mechanics 1 : Analysis of Reliability and Quality Control (Hardcover)

Ammar Grous (지은이)
John Wiley & Sons Inc
331,430원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
271,770원 -18% 0원
13,590원
258,180원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Fracture Mechanics 1 : Analysis of Reliability and Quality Control
eBook 미리보기

책 정보

· 제목 : Fracture Mechanics 1 : Analysis of Reliability and Quality Control (Hardcover) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 일반
· ISBN : 9781848214408
· 쪽수 : 272쪽
· 출판일 : 2012-12-18

목차

Preface ix

Chapter 1. Elements of Analysis of Reliability and Quality Control  1

1.1. Introduction 1

1.1.1. The importance of true physical acceleration life models (accelerated tests = true acceleration or acceleration)  3

1.1.2. Expression for linear acceleration relationships 4

1.2. Fundamental expression of the calculation of reliability 5

1.3. Continuous uniform distribution 9

1.3.1. Distribution function of probabilities (density of probability)  10

1.3.2. Distribution function 10

1.4. Discrete uniform distribution (discrete U)  12

1.5. Triangular distribution 13

1.5.1. Discrete triangular distribution version  13

1.5.2. Continuous triangular law version  14

1.5.3. Links with uniform distribution  14

1.6. Beta distribution 15

1.6.1. Function of probability density  16

1.6.2. Distribution function of cumulative probability 18

1.6.3. Estimation of the parameters (p, q) of the beta distribution  19

1.6.4. Distribution associated with beta distribution 20

1.7. Normal distribution 20

1.7.1. Arithmetic mean 20

1.7.2. Reliability 22

1.7.3. Stabilization and normalization of variance error  23

1.8. Log-normal distribution (Galton)  28

1.9. The Gumbel distribution 28

1.9.1. Random variable according to the Gumbel distribution (CRV, E1 Maximum)  29

1.9.2. Random variable according to the Gumbel distribution (CRV E1 Minimum) 30

1.10. The Frechet distribution (E2 Max)  31

1.11. The Weibull distribution (with three parameters) 32

1.12. The Weibull distribution (with two parameters)  35

1.12.1. Description and common formulae for the Weibull distribution and its derivatives 37

1.12.2. Areas where the extreme value distribution model can be used 39

1.12.3. Risk model 40

1.12.4. Products of damage 41

1.13. The Birnbaum–Saunders distribution  42

1.13.1. Derivation and use of the Birnbaum–Saunders model 43

1.14. The Cauchy distribution 45

1.14.1. Probability density function  45

1.14.2. Risk function  48

1.14.3. Cumulative risk function  48

1.14.4. Survival function (reliability) 49

1.14.5. Inverse survival function  49

1.15. Rayleigh distribution 50

1.16. The Rice distribution (from the Rayleigh distribution) 52

1.17. The Tukey-lambda distribution 53

1.18. Student’s (t) distribution 55

1.18.1. t-Student’s inverse cumulative function law (T)  57

1.19. Chi-square distribution law (χ2)  57

1.19.1. Probability distribution function of chi-square law (χ2) 57

1.19.2. Probability distribution function of chi-square law (χ2) 58

1.20. Exponential distribution 59

1.20.1. Example of applying mechanics to component lifespan 63

1.21. Double exponential distribution (Laplace)  66

1.21.1. Estimation of the parameters  66

1.21.2. Probability density function  66

1.21.3. Cumulated distribution probability function 67

1.22. Bernoulli distribution 68

1.23. Binomial distribution 71

1.24. Polynomial distribution 75

1.25. Geometrical distribution 75

1.25.1. Hypergeometric distribution (the Pascal distribution) versus binomial distribution  76

1.26. Hypergeometric distribution (the Pascal distribution) 78

1.27. Poisson distribution 80

1.28. Gamma distribution 81

1.29. Inverse gamma distribution 85

1.30. Distribution function (inverse gamma distribution probability density) 85

1.31. Erlang distribution (characteristic of gamma distribution, Γ)  85

1.32. Logistic distribution 89

1.33. Log-logistic distribution 91

1.33.1. Mathematical–statistical characteristics of log-logistic distribution 91

1.33.2. Moment properties 92

1.34. Fisher distribution (F-distribution or Fisher–Snedecor)  92

1.35. Analysis of component lifespan (or survival) 95

1.36. Partial conclusion of Chapter 1 96

1.37. Bibliography 97

Chapter 2. Estimates, Testing Adjustments and Testing the Adequacy of Statistical Distributions 99

2.1. Introduction to assessment and statistical tests 99

2.1.1. Estimation of parameters of a distribution 100

2.1.2. Estimation by confidence interval 102

2.1.3. Properties of an estimator with and without bias  103

2.2. Method of moments 106

2.3. Method of maximum likelihood 106

2.3.1. Estimation of maximum likelihood  107

2.3.2. Probability equation of reliability-censored data 108

2.3.3. Punctual estimation of exponential law  109

2.3.4. Estimation of the Weibull distribution  110

2.3.5. Punctual estimation of normal distribution 111

2.4. Moving least-squares method  113

2.4.1. General criterion: the LSC  114

2.4.2. Examples of nonlinear models 118

2.4.3. Example of a more complex process  122

2.5. Conformity tests: adjustment and adequacy tests  123

2.5.1. Model of the hypothesis test for adequacy and adjustment  125

2.5.2. Kolmogorov–Smirnov Test (KS 1930 and 1936)  126

2.5.3. Simulated test (1st application)  131

2.5.4. Simulated test (2nd application)  131

2.5.5. Example 1 132

2.5.6. Example 2 (Weibull or not?)  135

2.5.7. Cramer–Von Mises (CVM) test  139

2.5.8. The Anderson–Darling test 140

2.5.9. Shapiro–Wilk test of normality  145

2.5.10. Adequacy test of chi-square (χ2) 145

2.6. Accelerated testing method 151

2.6.1. Multi-censored tests 152

2.6.2. Example of the exponential model  152

2.6.3. Example of the Weibull model  152

2.6.4. Example for the log–normal model  153

2.6.5. Example of the extreme value distribution model (E-MIN) 153

2.6.6. Example of the study on the Weibull distribution  154

2.6.7. Example of the BOX–COX model  156

2.7. Trend tests 157

2.7.1. A unilateral test 158

2.7.2. The military handbook test (from the US Army)  160

2.7.3. The Laplace test  160

2.7.4. Homogenous Poisson Process (HPP)  160

2.8. Duane model power law 164

2.9. Chi-Square test for the correlation quantity  166

2.9.1. Estimations and χ2 test to determine the confidence interval 167

2.9.2. t_test of normal mean  170

2.9.3. Standard error of the estimated difference, s  171

2.10. Chebyshev’s inequality 171

2.11. Estimation of parameters 173

2.12. Gaussian distribution: estimation and confidence interval 174

2.12.1. Confidence interval estimation for a Gauss distribution 175

2.12.2. Reading to help the statistical values tabulated 175

2.12.3. Calculations to help the statistical formulae appropriate to normal distribution 175

2.12.4. Estimation of the Gaussian mean of unknown variance 175

2.13. Kaplan–Meier estimator 178

2.13.1. Empirical model using the Kaplan–Meier approach 179

2.13.2. General expression of the KM estimator 180

2.13.3. Application of the ordinary and modified Kaplan–Meier estimator 181

2.14. Case study of an interpolation using the bi-dimensional spline function 181

2.15. Conclusion 183

2.16. Bibliography 184

Chapter 3. Modeling Uncertainty 187

3.1. Introduction to errors and uncertainty 187

3.2. Definition of uncertainties and errors as in the ISO norm 189

3.3. Definition of errors and uncertainty in metrology 191

3.3.1. Difference between error and uncertainty 192

3.4. Global error and its uncertainty 202

3.5. Definitions of simplified equations of measurement uncertainty 204

3.5.1. Expansion factor k and range of relative uncertainty 206

3.5.2. Determination of type A and B uncertainties according to GUM 208

3.6. Principal of uncertainty calculations of type A and type B 229

3.6.1. Standard and expanded uncertainties  231

3.6.2. Components of type A and type B uncertainties 232

3.6.3. Error on repeated measurements: composed uncertainty 232

3.7. Study of the basics with the help of the GUMic software package: quasi-linear model 239

3.8. Conclusion 245

3.9. Bibliography 245

Glossary  249

Index 257

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책