logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

Numerical Methods for Simulation and Optimization of Piecewise Deterministic Markov Processes : Application to Reliability

Numerical Methods for Simulation and Optimization of Piecewise Deterministic Markov Processes : Application to Reliability (Hardcover)

Francois Dufour, Huilong Zhang, Benoite De Saporta (지은이)
Iste/Hermes Science Pub
326,980원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
268,120원 -18% 0원
13,410원
254,710원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Numerical Methods for Simulation and Optimization of Piecewise Deterministic Markov Processes : Application to Reliability
eBook 미리보기

책 정보

· 제목 : Numerical Methods for Simulation and Optimization of Piecewise Deterministic Markov Processes : Application to Reliability (Hardcover) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 수치해석
· ISBN : 9781848218390
· 쪽수 : 298쪽
· 출판일 : 2015-12-15

목차

Preface ix

Introduction xi

Part 1. Piecewise Deterministic Markov Processes and Quantization 1

Chapter 1. Piecewise Deterministic Markov Processes 3

1.1. Introduction 3

1.2. Notation 4

1.3. Definition of a PDMP 5

1.4. Regularityassumptions 8

1.4.1. Lipschitz continuity along the flow 8

1.4.2. Regularity assumptions on the local characteristics 9

1.5. Time-augmentedprocess 11

1.6. EmbeddedMarkovchain 15

1.7. Stopping times 16

1.8. ExamplesofPDMPs 20

1.8.1. Poisson processwith trend 20

1.8.2. TCP 21

1.8.3. Air conditioningunit 22

1.8.4. Crack propagationmodel 23

1.8.5. Repairworkshopmodel 24

Chapter 2. Examples in Reliability 27

2.1. Introduction 27

2.2. Structure subject to corrosion 28

2.2.1. PDMPmodel 29

2.2.2. Deterministic time to reach the boundary 32

2.3. The heatedhold-uptank 33

2.3.1. Tank dynamics 34

2.3.2. PDMPmodel 36

Chapter 3. Quantization Technique 39

3.1. Introduction 39

3.2. Optimal quantization 40

3.2.1. Optimal quantization of a random variable 40

3.2.2. Optimal quantization of a Markovchain 42

3.3. SimulationofPDMPs 44

3.3.1. Simulation of time-dependent intensity 45

3.3.2. Simulation of trajectories 45

3.4. QuantizationofPDMPs 47

3.4.1. Scale of coordinates of the state variable 48

3.4.2. Cardinality of the mode variable 50

Part 2. Simulation of Functionals 53

Chapter 4. Expectation of Functionals 55

4.1. Introduction 55

4.2. Recursive formulation 57

4.2.1. Lipschitz continuity 58

4.2.2. Iterated operator 60

4.2.3. Approximationscheme 61

4.3. Lipschitz regularity 62

4.4. Rate of convergence 69

4.5. Time-dependent functionals 71

4.6. Deterministic time horizon 74

4.6.1. Direct estimation of the running cost term 74

4.6.2. Bounds of the boundary jump cost term 77

4.6.3. Bounds in the general case 79

4.7. Example 81

4.8. Conclusion 84

Chapter 5. Exit Time 87

5.1. Introduction 87

5.2. Problem setting 88

5.2.1. Distribution 90

5.2.2. Moments 91

5.2.3. Computationhorizon 92

5.3. Approximationschemes 92

5.4. Convergence 95

5.4.1. Distribution 95

5.4.2. Moments 100

5.5. Example 101

5.6. Conclusion 108

Chapter 6. Example in Reliability: Service Time 109

6.1. Mean thickness loss 109

6.2. Service time 112

6.2.1. Mean service time 114

6.2.2. Distribution of the service time 118

6.3. Conclusion 121

Part 3. Optimization 123

Chapter 7. Optimal Stopping 125

7.1. Introduction 125

7.2. Dynamic programming equation 128

7.3. Approximation of the value function 130

7.4. Lipschitz continuity properties 132

7.4.1. Lipschitz properties of J and K 132

7.4.2. Lipschitz properties of the value functions 135

7.5. Error estimation for the value function 138

7.5.1. Second term 140

7.5.2. Third term 141

7.5.3. Fourth term 147

7.5.4. Proof of theorem 7.1 148

7.6. Numerical construction of an [1]-optimal stopping time 149

7.7. Example 161

Chapter 8. Partially Observed Optimal Stopping Problem 165

8.1. Introduction 165

8.2. Problem formulation and assumptions 167

8.3. Optimal filtering 170

8.4. Dynamicprogramming 175

8.4.1. Preliminaryresults 176

8.4.2. Optimal stopping problem under complete observation 180

8.4.3. Dynamic programming equation 181

8.5. Numerical approximation by quantization 188

8.5.1. Lipschitz properties 189

8.5.2. Discretization scheme 195

8.5.3. Numerical construction of an [1]-optimal stopping time 205

8.6. Numerical example 211

Chapter 9. Example in Reliability: Maintenance Optimization 215

9.1. Introduction 215

9.2. Corrosionprocess 216

9.3. Air conditioningunit 219

9.4. The heatedhold-uptank 221

9.4.1. Problem setting and simulation 222

9.4.2. Numerical results and validation 224

9.5. Conclusion 228

Chapter 10. Optimal Impulse Control 231

10.1. Introduction 231

10.2. Impulse controlproblem233

10.3. Lipschitz-continuity properties 236

10.3.1. Lipschitz properties of the operators 236

10.3.2. Lipschitz properties of the operator L 239

10.4. Approximation of the value function 242

10.4.1. Time discretization 245

10.4.2. Approximation of the value functions on the control grid U 246

10.4.3. Approximation of the value function 255

10.4.4. Step-by-step description of the algorithm 259

10.4.5. Practical implementation 259

10.5. Example 262

10.6. Conclusion 264

Bibliography 269

Index 277

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책