logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Modern Special Relativity: A Student's Guide with Discussions and Examples

Modern Special Relativity: A Student's Guide with Discussions and Examples (Paperback, 2021)

Johann Rafelski (지은이)
Springer
122,090원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
100,110원 -18% 0원
5,010원
95,100원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Modern Special Relativity: A Student's Guide with Discussions and Examples
eBook 미리보기

책 정보

· 제목 : Modern Special Relativity: A Student's Guide with Discussions and Examples (Paperback, 2021) 
· 분류 : 외국도서 > 과학/수학/생태 > 과학 > 물리학 > 수학/컴퓨터
· ISBN : 9783030543518
· 쪽수 : 458쪽
· 출판일 : 2022-03-08

목차

I Space-Time, Light and the aether 1

1 What is (Special) Relativity? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Principle of Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Time, a 4th coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Path toward Lorentz coordinate transformations . . . . . . . . . . . . . . 10
1.4 Highlights: How did relativity happen? . . . . . . . . . . . . . . . . . . . 13

2 Light and the aether . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1 Measuring space and time: SI unit system . . . . . . . . . . . . . . . . . . 15
2.2 Speed of light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Essay: aether and Special Relativity . . . . . . . . . . . . . . . . . . . . . 25

3 Material Bodies in SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1 The Michelson-Morley Experiment . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Body contraction and time dilation . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Is the Lorentz-FitzGerald body contraction measurable? . . . . . . . . . . 38
3.4 Experiments require understanding of body contraction . . . . . . . . . . 40
3.5 Resolving misunderstandings of SR . . . . . . . . . . . . . . . . . . . . . . 42

II Time Dilation, and Lorentz-Fitzgerald Body Contraction 47

4 Time Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.1 Proper time of a traveler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Relativistic light-clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Talking about time (dilation) . . . . . . . . . . . . . . . . . . . . . . . . . 56

5 The Lorentz-FitzGerald Body Contraction . . . . . . . . . . . . . . . . . . . . . . 61
5.1 Light-clock moving parallel to light path . . . . . . . . . . . . . . . . . . . 61
5.2 Body contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3 Arbitrary orientation of the light clock . . . . . . . . . . . . . . . . . . . . 66

III The Lorentz Transformation 73

6 Relativistic Coordinate Transformation . . . . . . . . . . . . . . . . . . . . . . . 75
6.1 Derivation of the Lorentz coordinate transformation . . . . . . . . . . . . 75
6.2 Explicit form of the Lorentz transformation . . . . . . . . . . . . . . . . . 79
6.3 The nonrelativistic Galilean limit . . . . . . . . . . . . . . . . . . . . . . . 84
6.4 The inverse Lorentz coordinate transformation . . . . . . . . . . . . . . . 85

7 Some Consequences of Lorentz Transformation . . . . . . . . . . . . . . . . . . . 88
7.1 Invariance of proper time . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2 Relativistic addition of velocities . . . . . . . . . . . . . . . . . . . . . . . 92
7.3 Two Lorentz coordinate transformations in sequence . . . . . . . . . . . . 99
7.4 Rapidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

IV Measurement 111

8 Time Measurement and Lorentz Transformation . . . . . . . . . . . . . . . . . . 113
8.1 Graphic representation of Lorentz Transformation . . . . . . . . . . . . . 113
8.2 Time dilation and simultaneity . . . . . . . . . . . . . . . . . . . . . . . . 114

9 Methods of Measuring Spatial Separation . . . . . . . . . . . . . . . . . . . . . . 119
9.1 Introductory remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.2 Determination of spatial separation . . . . . . . . . . . . . . . . . . . . . . 120
9.3 Light illumination emitted in the rest-frame of the observer . . . . . . . . 123
9.4 Train in the tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

10 The Bell Rockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
10.1 Rockets connected by a thread . . . . . . . . . . . . . . . . . . . . . . . . 130
10.2 The thread breaks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
10.3 Lorentz-FitzGerald body contraction measured . . . . . . . . . . . . . . . 133

V Space, Time, Doppler Shift 139

11 The Light-Cone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
11.1 The future . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
11.2 The past . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

12 Space-time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
12.1 Timelike and spacelike event separation . . . . . . . . . . . . . . . . . . . 149
12.2 Time dilation revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
12.3 Essay: Quantum entanglement and causality . . . . . . . . . . . . . . . . 156

13 SR-Doppler Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
13.1 Introducing the nonrelativistic Doppler shift . . . . . . . . . . . . . . . . . 162
13.2 Misunderstanding of the relativistic Doppler eect . . . . . . . . . . . . . 164
13.3 SR-Aberration of light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
13.4 SR-Doppler shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

VI Mass, Energy, Momentum 177

14 Mass and Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
14.1 Energy of a body at rest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
14.2 Relativistic energy of a moving body . . . . . . . . . . . . . . . . . . . . . 182
14.3 Mass of a body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

15 Particle Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
15.1 Relation between energy and momentum . . . . . . . . . . . . . . . . . . 186
15.2 Particle rapidity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

16 Generalized Mass-Energy Equivalence . . . . . . . . . . . . . . . . . . . . . . . . 201
16.1 Where does energy come from? . . . . . . . . . . . . . . . . . . . . . . . . 201
16.2 Mass equivalence for kinetic energy in a gas . . . . . . . . . . . . . . . . . 202
16.3 Potential energy mass equivalence . . . . . . . . . . . . . . . . . . . . . . 203
16.4 Atomic mass defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
16.5 Rotational energy mass equivalence . . . . . . . . . . . . . . . . . . . . . 206
16.6 Chemical energy mass defect . . . . . . . . . . . . . . . . . . . . . . . . . 207
16.7 Nuclear mass defect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
16.8 Origin of energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

VII Collisions, Decays 213

17 Preferred Frame of Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
17.1 The center of momentum frame (CM-Frame) . . . . . . . . . . . . . . . . 215
17.2 The Lorentz transformation to the CM-frame . . . . . . . . . . . . . . . . 217
17.3 Particle decay in the CM-frame . . . . . 228 . . . . . . . . . . . . . . . . . . . 220
17.4 Decay energy balance in CM-frame . . . . . . . . . . . . . . . . . . . . . . 222
17.5 Decay of a body in flight . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

18 Particle Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
18.1 Elastic two body reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
18.2 Compton Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
18.3 Elastic bounce from a moving wall . . . . . . . . . . . . . . . . . . . . . . 233
18.4 Inelastic two-body reaction threshold . . . . . . . . . . . . . . . . . . . . . 237
18.5 Energy available in a two body collision . . . . . . . . . . . . . . . . . . . 241
18.6 Inelastic collision and particle production . . . . . . . . . . . . . . . . . . 247

VIII SR-Tests & Open Questions 251

19 Tests of Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
19.1 Overview: Testing SR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
19.2 The Michelson-Morley experiment today . . . . . . . . . . . . . . . . . . . 254
19.3 How constant is the speed of light? . . . . . . . . . . . . . . . . . . . . . . 255
19.4 Tests of SR material body properties . . . . . . . . . . . . . . . . . . . . . 256
19.5 Doppler effect and tests of the Lorentz coordinate transformation . . . . . 258
19.6 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

20 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
20.1 Accelerated motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
20.2 Can there be acceleration in SR? . . . . . . . . . . . . . . . . . . . . . . . 265
20.3 Evidence for the existence of acceleration . . . . . . . . . . . . . . . . . . 266
20.4 Small and large acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 268
20.5 Achieving strong acceleration . . . . . . . . . . . . . . . . . . . . . . . . . 269

IX Lorentz Force and Particle Motion 275

21 Acceleration and Lorentz Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
21.1 Newton's second Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
21.2 Motion in magnetic and electric elds . . . . . . . . . . . . . . . . . . . . 280
21.3 Variational principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
21.4 Electron Coulomb orbits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

22 Electrons Riding a Plane Wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
22.1 Fields and potentials for a plane wave . . . . . . . . . . . . . . . . . . . . 298
22.2 Role of conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
22.3 Surng the plane wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305

X Space Travel 311

23 Spaceship Travel in the Milky Way . . . . . . . . . . . . . . . . . . . . . . . . . . 313
23.1 Space travel with constant acceleration . . . . . . . . . . . . . . . . . . . 313
23.2 The eect of time dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
23.3 How far can we travel? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
23.4 Variable acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319

24 Relativistic Rocket equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
24.1 Nonrelativistic rocket equation . . . . . . . . . . . . . . . . . . . . . . . . 322
24.2 Relativistic rocket equation . . . . . . . . . . . . . . . . . . . . . . . . . . 323
24.3 Energy of relativistic rocket . . . . . . . . . . . . . . . . . . . . . . . . . . 325

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책