logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images: First Challenge, Myops 2020, Held in Conjunction with Mi

Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images: First Challenge, Myops 2020, Held in Conjunction with Mi (Paperback, 2020)

Lei Li, Xiahai Zhuang (엮은이)
Springer
100,600원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
82,490원 -18% 0원
4,130원
78,360원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images: First Challenge, Myops 2020, Held in Conjunction with Mi
eBook 미리보기

책 정보

· 제목 : Myocardial Pathology Segmentation Combining Multi-Sequence Cardiac Magnetic Resonance Images: First Challenge, Myops 2020, Held in Conjunction with Mi (Paperback, 2020) 
· 분류 : 외국도서 > 컴퓨터 > 컴퓨터 비전/패턴 인식
· ISBN : 9783030656508
· 쪽수 : 177쪽
· 출판일 : 2020-12-19

목차

Stacked BCDU-net with semantic CMR synthesis: application to Myocardial PathologySegmentation challenge.- EfficientSeg: A Simple but Efficient Solution to Myocardial Pathology Segmentation Challenge.- Two-stage Method for Segmentation of the Myocardial Scars and Edema on Multi-sequence Cardiac Magnetic Resonance.- Multi-Modality Pathology Segmentation Framework: Application to Cardiac Magnetic Resonance Images.- Myocardial Edema and Scar Segmentation using a Coarse-to-Fine Framework with Weighted Ensemble.- Exploring ensemble applications for multi-sequence myocardial pathology segmentation.- Max-Fusion U-Net for Multi-Modal Pathology Segmentation with Attention and Dynamic Resampling.- Fully automated deep learning based segmentation of normal, infarcted and edema regions from multiple cardiac MRI sequences.- CMS-UNet: Cardiac Multi-task Segmentation in MRI with a U-shaped Network.- Automatic Myocardial Scar Segmentation from Multi-Sequence Cardiac MRI using Fully Convolutional Densenet with Inception and Squeeze-Excitation Module.- Dual Attention U-net for Multi-Sequence Cardiac MR Images Segmentation.- Accurate Myocardial Pathology Segmentation with Residual U-Net.- Stacked and Parallel U-Nets with Multi-Output for Myocardial Pathology Segmentation.- Dual-path Feature Aggregation Network Combined Multi-layer Fusion for Myocardial Pathology Segmentation with Multi-sequence Cardiac MR.- Cascaded Framework with Complementary CMR Information for Myocardial Pathology Segmentation.- CMRadjustNet: Recognition and standardization of cardiac MRI orientation via multi-tasking learning and deep neural networks.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책