logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Artificial Intelligence for Materials Science

Artificial Intelligence for Materials Science (Paperback)

Gang Zhang, Cheng Yuan, Tian Wang (엮은이)
Springer
290,470원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
238,180원 -18% 0원
11,910원
226,270원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Artificial Intelligence for Materials Science
eBook 미리보기

책 정보

· 제목 : Artificial Intelligence for Materials Science (Paperback) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 재료과학
· ISBN : 9783030683122
· 쪽수 : 228쪽
· 출판일 : 2022-03-29

목차

Chapter 1. Materials Genome Initiatives: Past, Present, and Prospect

Gang Zhang, Institute of High Performance Computing, A*STAR, 138632 Singapore. zhangg@ihpc.a-star.edu.sg

 

Chapter 2. Introduction of the Machine Learning method

Tian Wang, Hichem Snoussi

1. School of Automation Science and Electrical Engineering, Beihang University, Beijing 100083, China. Email: wangtian@buaa.edu.cn

2. Institute Charles Delaunay-LM2S FRE CNRS 2019, University of Technology of Troyes, Troyes 10030, France. Email: hichem.snouss@utt.fr

 

Chapter 3. Machine learning for high entropy alloys

Yuan Cheng, Huajian Gao

Institute of High Performance Computing, A*STAR, 138632 Singapore;

School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore. huajian.gao@ntu.edu.sg

 

Chapter 4. Machine learning for biomaterial design

Markus J. Buehler, Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Room 1-290, Cambridge, Massachusetts 02139, USA. Email: mbuehler@MIT.EDU

 

Chapter 5. Rapid Photovoltaic Device Characterization through AI technology

Tonio Buonassisi, MIT. Email: BUONASSISI@MIT.EDU

 

Chapter 6. Machine learning for thermal contact design

Junichiro Shiomi, The University of Tokyo, Japan. shiomi@photon.t.u?tokyo.ac.jp 

 

Chapter 7. Discovery of new thermoelectric material through high-throughput calculation

Wenqing Zhang, Southern University of Science and Technology, China. zhangwq@sustc.edu.cn

 

Chapter 8. Machine learning for high heat conductive material

Eric S. Toberer, Colorado School of Mines, USA. E-mail: etoberer@mines.edu

 

Chapter 9. Machine learning assisted discovery of new 2D Materials

Huafeng Dong, Guangdong University of Technology, China. Email: hfdong@gdut.edu.cn.

 

Chapter 10. Interatomic Potentials developed through Machine Learning

Lin-Wang Wang, Lawrence Berkeley National Laboratory, Berkeley, USA. Email: lwwang@lbl.gov

 

Chapter 11. Discovery of new Compounds

Arthur Mar, Department of Chemistry, University of Alberta, Canada. E-mail: amar@ualberta.ca.

 

Chapter 12. Defect Dynamics Probed by Using Machine Learning and Experiment.

Anja Aarva, Aalto University, 02150 Espoo, Finland. E-mail: anja.aarva@aalto.fi.

 

Chapter 13. Machine-Learning Analysis to Predict electronic properties

Xi Zhu, The Chinese University of Hong Kong, E-mail: zhuxi@cuhk.edu.cn.

 

Chapter 14. Machine-Learning Analysis to Predict spin properties

Dmitry V. Krasnikov, Skolkovo Institute of Science and Technology, Russian Federation. E-mail: d.krasnikov@skoltech.ru.

 

Chapter 15. Determination of Material and Structural Parameters using Two-way Neural Network

Xu Han, School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China. E-mail: xhan@hebut.edu.cn

저자소개

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책