logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Smart Log Data Analytics: Techniques for Advanced Security Analysis

Smart Log Data Analytics: Techniques for Advanced Security Analysis (Hardcover, 2021)

Florian Skopik, Markus Wurzenberger, Max Landauer (지은이)
Springer
324,990원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
266,490원 -18% 0원
13,330원
253,160원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Smart Log Data Analytics: Techniques for Advanced Security Analysis
eBook 미리보기

책 정보

· 제목 : Smart Log Data Analytics: Techniques for Advanced Security Analysis (Hardcover, 2021) 
· 분류 : 외국도서 > 컴퓨터 > 보안 > 일반
· ISBN : 9783030744496
· 쪽수 : 208쪽
· 출판일 : 2021-08-29

목차

1 Introduction  

1.1 State of the art in security monitoring and anomaly detection

1.2 Current trends

1.3. future challenges

1.4 Log data analysis: today and tomorrow

1.5 Smart log data analytics: Structure of the book

1.6 Try it out: Hands-on examples throughout the book

2 Survey on log clustering approaches

2.1 Introduction

2.2 Survey background

2.1 The nature of log data

2.2 Static clustering

2.3 Dynamic clustering

2.4 Applications in the security domain

2.3 Survey method

2.3.1 Set of criteria

2.3.2 Literature search

2.4 Survey results

2.4.1 Purpose and applicability (P)

2.4.2 Clustering techniques (C)

2.4.3 Anomaly detection (AD)

2.4.4 Evaluation (E)

2.4.5 Discussion

2.5 Conclusion

3 Incremental log data clustering for processing large amounts of data online

3.1 Introduction

3.2 Concept for incremental clustering

3.2.1 Incremental clustering

3.2.2 Description of model

3.2.3 String metrics

3.2.4 Description of model 푀퐼 퐼

3.2.5 Time series analysis

 3.3 Outlook and further development

3.4 Try it out

 3.4.1 Exim Mainlog

3.4.2 Messages log file

 4 Generating character-based templates for log data

4.1 Introduction

 4.2 Concept for generating character-based templates

4.3 Cluster template generator algorithms    4.3.1 Initial matching

 4.3.2 Merge algorithm

4.3.3 Length algorithm

 4.3.4 Equalmerge algorithm

4.3.5 Token_char algorithm

4.3.6 Comparison

4.4 Outlook and further development

4.5 Try it out

 4.5.1 Exim Mainlog

5 Time series analysis for temporal anomaly detection    5.1 Introduction

 5.2 Concept for dynamic clustering and AD

5.3 Cluster evolution

5.3.1 Clustering model

 5.3.2 Tracking

 5.3.3 Transitions

 5.3.4 Evolution metrics

 5.4 Time series analysis

 5.4.1 Model

5.4.2 Forecast

 5.4.3 Correlation

5.4.4 Detection

5.5 Example

 5.5.1 Long-term analysis of Suricata logs    5.5.2 Short-term analysis of Audit logs

6 AECID: A light-weight log analysis approach for online anomaly detection

 6.1 Introduction

 6.2 The AECID approach

6.2.1 AMiner

6.2. AECID central

6.2. Detecting anomalies

 6.2. Rule generator

 6.2. Correlation engine

 6.2. Detectable anomalies

 6. System deployment and operation

 6. Application scenarios

 6. Try it out

  6.5.1 Configuration of the AMiner for AIT-LDSv1.

  6.5.2 Apache Access logs

 6.5.3 Exim Mainlog file

 6.5.4 Audit logs

 7  A concept for a tree-based log parser generator

 7.1 Introduction

  7.2 Tree-based parser concept

 7.3 AECID-PG: tree-based log parser generator

 7.3.1 Challenges when generating tree-like parsers

  7.3.2 AECID-PG concept

 7.3.3 AECID-PG rules

 7.3.4 Features

   7.4 Outlook and further application

 7.5 Try it out

  7.5.1 Exim Mainlog

 7.5.2 Audit logs

   8 Variable type detector for statistical analysis of log tokens

 8.1 Introduction

  8.2 Variable type detector concept

 8.3 Variable type detector algorithm

8.3.1 Sanitize log data

  8.3.2 Initialize types

8.3.3 Update types

 8.3.4 Compute indicators

 8.3.5 Select tokens

 8.3.6 Compute indicator weights

 8.3.7 Report anomalies

 8.4 Try it out

  8.4.1 Apache Access log

  9. Final remarks

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책