logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Data Science in Engineering, Volume 9: Proceedings of the 39th Imac, a Conference and Exposition on Structural Dynamics 2021

Data Science in Engineering, Volume 9: Proceedings of the 39th Imac, a Conference and Exposition on Structural Dynamics 2021 (Hardcover, 2022)

Francois Hemez, Ramin Madarshahian (엮은이)
Springer
555,040원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
455,130원 -18% 0원
22,760원
432,370원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Data Science in Engineering, Volume 9: Proceedings of the 39th Imac, a Conference and Exposition on Structural Dynamics 2021
eBook 미리보기

책 정보

· 제목 : Data Science in Engineering, Volume 9: Proceedings of the 39th Imac, a Conference and Exposition on Structural Dynamics 2021 (Hardcover, 2022) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 공학일반
· ISBN : 9783030760038
· 쪽수 : 291쪽
· 출판일 : 2021-10-05

목차

Chapter 1. Towards a Population-based Structural Health Monitoring, Part V: Networks and Databases.- Chapter 2. Active Learning of Post-Earthquake Structural Damage with Co-Optimal Information Gain and Reconnaissance Cost.- Chapter 3. Uncertainty-Quantified Damage Identification for High-Rate Dynamic Systems.- Chapter 4. Real-time Machine Learning of Vibration Signals.- Chapter 5. Data-Driven Identification of Mistuning in Blisks.- Chapter 6. On Generating Parametrised Structural Data Using Conditional Generative Adversarial Networks.- Chapter 7. Best Paper: On an Application of Graph Neural Networks in Population Based SHM.- Chapter 8. Estimation of Elastic Band Gaps Using Data-Driven Model.- Chapter 9. Damage Localization on Lightweight Structures with Non-Destructive Testing and Machine Learning Techniques.- Chapter 10. Challenges for SHM from Structural Repairs: An Outlier-informed Domain Adaptation Approach.- Chapter 11. On the Application of Heterogeneous Transfer Learning to Population-based Structural Health Monitoring.- Chapter 12. An Unsupervised Deep Auto-Encoder with One-Class Support Vector Machine for Damage Detection.- Chapter 13. Identifying Operations- and Environmental-Insensitive Damage Features.- Chapter 14. Hybrid Concrete Crack Segmentation and Quantification Across Complex Backgrounds without Big Training Dataset.- Chapter 15. Digital Stroboscopy using Event-Driven Imagery.- Chapter 16. Managing System Inspections for Health Monitoring: A Probability of Query Approach.- Chapter 17. Parameter Estimation for Dynamical Systems Under Continuous and Discontinuous Gaussian Noise Using Data Assimilation Techniques.- Chapter 18. Model Reduction of Geometrically Nonlinear Structures via Physics-Informed Autoencoders.- Chapter 19. Techniques to Improve Robustness of Video-Based Sensor Networks.- Chapter 20. Grey-Box Modelling via Gaussian Process Mean Functions for Mechanical Systems.- Chapter 21. On Topological Data Analysis for SHM; An Introduction to Persistent Homology.- Chapter 22. Heteroscedastic Gaussian Processes for Localising Acoustic Emission.- Chapter 23. Transferring Damage Detectors Between Tailplane Experiments.- Chapter 24. High-Rate Structural Health Monitoring and Prognostics: An Overview.- Chapter 25. One Versus All: Best Practices in Combining Multi-Hazard Damage Imagery Training Datasets for Damage Detection for a Deep Learning Neural Network.- Chapter 26. High-Rate Damage Classification and Lifecycle Prediction via Deep Learning.- Chapter 27. A Generalized Technique for Full-field Blind Identification of Travelling Waves and Complex Modes from Video Measurements with Hilbert Transform.- Chapter 28. Privacy-Preserving Structural Dynamics.- Chapter 29. Abnormal Behavior Detection of the Indian River Inlet Bridge through Cross Correlation Analysis of Truck Induced Strains.- Chapter 30. A Video-Based Crack Detection in Concrete Surfaces.- Chapter 31. Bayesian Graph Neural Networks for Strain-Based Crack Localization.- Chapter 32. Routing of Public and Electric Transportation Systems Using Reinforcement Learning.- Chapter 33. Vibration based Damage Detection and Identification in a CFRP Truss with Deep Learning and Finite Element Generated Data.- Chapter 34. Parametric Amplification in a Stochastic Nonlinear Piezoelectric Energy Harvester via Machine Learning.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책