책 이미지

eBook 미리보기
책 정보
· 제목 : Multivariate Statistical Machine Learning Methods for Genomic Prediction (Paperback) 
· 분류 : 외국도서 > 기술공학 > 기술공학 > 농업 > 일반
· ISBN : 9783030890124
· 쪽수 : 691쪽
· 출판일 : 2022-01-14
· 분류 : 외국도서 > 기술공학 > 기술공학 > 농업 > 일반
· ISBN : 9783030890124
· 쪽수 : 691쪽
· 출판일 : 2022-01-14
목차
Preface.- Chapter 1.- General elements of genomic selection and statistical learning.- Chapter. 2.- Preprocessing tools for data preparation.- Chapter. 3.- Elements for building supervised statistical machine learning models.- Chapter. 4.- Overfitting, model tuning and evaluation of prediction performance.- Chapter. 5.- Linear Mixed Models.- Chapter. 6.- Bayesian Genomic Linear Regression.- Chapter. 7.- Bayesian and classical prediction models for categorical and count data.- Chapter. 8.- Reproducing Kernel Hilbert Spaces Regression and Classification Methods.- Chapter. 9.- Support vector machines and support vector regression.- Chapter. 10.- Fundamentals of artificial neural networks and deep learning.- Chapter. 11.- Artificial neural networks and deep learning for genomic prediction of continuous outcomes.- Chapter. 12.- Artificial neural networks and deep learning for genomic prediction of binary, ordinal and mixed outcomes.- Chapter. 13.- Convolutional neural networks.- Chapter. 14.- Functional regression.- Chapter. 15.- Random forest for genomic prediction.
저자소개
추천도서
분야의 베스트셀러 >