logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

An Introduction to Machine Learning

An Introduction to Machine Learning (Hardcover)

Miroslav Kubat (지은이)
Springer International Publishing
90,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
90,000원 -0% 0원
2,700원
87,300원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

An Introduction to Machine Learning
eBook 미리보기

책 정보

· 제목 : An Introduction to Machine Learning (Hardcover) 
· 분류 : 외국도서 > 컴퓨터 > 데이터베이스 관리 > 데이터 마이닝
· ISBN : 9783319639123
· 쪽수 : 400쪽
· 출판일 : 2017-09-08

목차

1 A Simple Machine-Learning Task 1 1.1 Training Sets and Classifiers.......................................................................... 1 1.2 Minor Digression: Hill-Climbing Search....................................................... 5 1.3 Hill Climbing in Machine Learning................................................................ 9 1.4 The Induced Classifier's Performance........................................................ 12 1.5 Some Di culties with Available Data......................................................... 14 1.6 Summary and Historical Remarks............................................................... 18 1.7 Solidify Your Knowledge.............................................................................. 19 2 Probabilities: Bayesian Classifiers 22 2.1 The Single-Attribute Case............................................................................. 22 2.2 Vectors of Discrete Attributes..................................................................... 27 2.3 Probabilities of Rare Events: Exploiting the Expert's Intuition............. 29 2.4 How to Handle Continuous Attributes....................................................... 35 2.5 Gaussian "Bell" Function: A Standard pdf ................................................. 38 2.6 Approximating PDFs with Sets of Gaussians............................................ 40 2.7 Summary and Historical Remarks............................................................... 43 2.8 Solidify Your Knowledge.............................................................................. 46 3 Similarities: Nearest-Neighbor Classifiers 49 3.1 The k-Nearest-Neighbor Rule...................................................................... 49 3.2 Measuring Similarity...................................................................................... 52 3.3 Irrelevant Attributes and Scaling Problems............................................... 56 3.4 Performance Considerations........................................................................ 60 3.5 Weighted Nearest Neighbors....................................................................... 63 3.6 Removing Dangerous Examples.................................................................. 65 3.7 Removing Redundant Examples.................................................................. 68 3.8 Summary and Historical Remarks............................................................... 71 3.9 Solidify Your Knowledge.............................................................................. 72 4 Inter-Class Boundaries: Linear and Polynomial Classifiers 75 4.1 The Essence..................................................................................................... 75 4.2 The Additive Rule: Perceptron Learning.................................................... 79 4.3 The Multiplicative Rule: WINNOW............................................................ 85 4.4 Domains with More than Two Classes........................................................ 88 4.5 Polynomial Classifiers..................................................................................... 91 4.6 Specific Aspects of Polynomial Classifiers................................................... 93 4.7 Numerical Domains and Support Vector Machines................................... 97 4.8 Summary and Historical Remarks.............................................................. 100 4.9 Solidify Your Knowledge............................................................................. 101 5 Artificial Neural Networks 105 5.1 Multilayer Perceptrons as Classifiers.......................................................... 105

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책