책 이미지
책 정보
· 분류 : 외국도서 > 기술공학 > 기술공학 > 나노테크놀리지/MEMS
· ISBN : 9783527333806
· 쪽수 : 664쪽
· 출판일 : 2013-08-05
목차
Foreword XV
Preface to the 2nd Edition XVII
Preface to the 1st Edition XIX
List of Contributors XXI
Part One Sustainable Energy Production 1
1 Nanotechnology for Energy Production 3
Elena Serrano, Kunhao Li, Guillermo Rus, and Javier García-Martínez
1.1 Energy Challenges in the Twenty-first Century and Nanotechnology 3
1.2 Nanotechnology in Energy Production 6
1.2.1 Photovoltaics 6
1.2.2 Hydrogen Production 14
1.2.3 Fuel Cells 20
1.2.4 Thermoelectricity 27
1.3 New Opportunities 28
1.4 Outlook and Future Trends 33
Acknowledgments 34
References 34
2 Nanotechnology in Dye-Sensitized Photoelectrochemical Devices 41
Augustin J. McEvoy and Michael Grätzel
2.1 Introduction 41
2.2 Semiconductors and Optical Absorption 42
2.3 Dye Molecular Engineering 46
2.4 The Stable Self-Assembling Dye Monomolecular Layer 48
2.5 The Nanostructured Semiconductor 50
2.6 Recent Research Trends 52
2.7 Conclusions 54
References 54
3 Thermal-Electrical Energy Conversion from the Nanotechnology Perspective 57
Jian He and Terry M. Tritt
3.1 Introduction 57
3.2 Established Bulk Thermoelectric Materials 58
3.3 Selection Criteria for Bulk Thermoelectric Materials 61
3.4 Survey of Size Effects 63
3.4.1 Classic Size Effects 64
3.4.2 Quantum Size Effects 65
3.4.3 Thermoelectricity of Nanostructured Materials 66
3.5 Thermoelectric Properties on the Nanoscale: Modeling and Metrology 68
3.6 Experimental Results and Discussions 70
3.6.1 Bi Nanowire/Nanorod 70
3.6.2 Si Nanowire 72
3.6.3 Engineered “Exotic” Nanostructures 74
3.6.4 Thermionics 76
3.6.5 Thermoelectric Nanocomposites: a New Paradigm 78
3.7 Summary and Perspectives 83
Acknowledgments 84
References 84
4 Piezoelectric and Piezotronic Effects in Energy Harvesting and Conversion 89
Xudong Wang
4.1 Introduction 89
4.2 Piezoelectric Effect 90
4.3 Piezoelectric Nanomaterials for Mechanical Energy Harvesting 91
4.3.1 Piezoelectric Potential Generated in a Nanowire 92
4.3.2 Enhanced Piezoelectric Effect from Nanomaterials 94
4.3.3 Nanogenerators for Nanoscale Mechanical Energy Harvesting 96
4.3.3.1 Output of Piezoelectric Potential from Nanowires 96
4.3.3.2 The First Prototype Nanogenerator Driven by Ultrasonic Waves 98
4.3.3.3 Output Power Estimation 99
4.3.4 Large-Scale and High-Output Nanogenerators 101
4.3.4.1 Lateral ZnO Nanowire-Based Nanogenerators 101
4.3.4.2 Piezoelectric Polymer Thin Film-Based Nanogenerators 104
4.4 Piezocatalysis – Conversion between Mechanical and Chemical Energies 109
4.4.1 Fundamental Principles of Piezocatalysis 109
4.4.2 Piezocatalyzed Water Splitting 110
4.4.3 Basic Kinetics of Piezocatalyzed Water Splitting 112
4.5 Piezotronics for Enhanced Energy Conversion 114
4.5.1 What is the Piezotronic Effect? 115
4.5.2 Band Structure Engineering by Piezotronic Effect 115
4.5.2.1 Remnant Polarization in Strained Piezoelectric Materials 115
4.5.2.2 Interface Band Engineering by Remnant Piezopotential 116
4.5.2.3 Quantitative Study of Interface Barrier Height Engineering 118
4.5.3 Piezotronics Modulated Photovoltaic Effect 120
4.5.3.1 Principle of Piezotronic Band Structure Engineering 120
4.5.3.2 Piezoelectric Polarization-Enhanced Photovoltaic Performance 122
4.6 Perspectives and Conclusion 125
Acknowledgments 127
References 127
5 Graphene for Energy Production and Storage Applications 133
Dale A.C. Brownson, Jonathan P. Metters, and Craig E. Banks
5.1 Introduction 133
5.2 Graphene Supercapacitors 135
5.3 Graphene as a Battery/Lithium-Ion Storage 147
5.4 Graphene in Energy Generation Devices 158
5.4.1 Fuel Cells 158
5.4.2 Microbial Biofuel Cells 161
5.4.3 Enzymatic Biofuel Cells 166
5.5 Conclusions/Outlook 167
References 168
6 Nanomaterials for Fuel Cell Technologies 171
Antonino Salvatore Aricò, Vincenzo Baglio, and Vincenzo Antonucci
6.1 Introduction 171
6.2 Low-Temperature Fuel Cells 172
6.2.1 Cathode Reaction 172
6.2.2 Anodic Reaction 178
6.2.3 Practical Fuel Cell Catalysts 180
6.2.4 Nonprecious Catalysts 189
6.2.5 Electrolytes 189
6.2.6 High-Temperature Polymer Electrolyte Membranes 191
6.2.7 Membrane–Electrode Assembly 196
6.3 High-Temperature Fuel Cells 198
6.3.1 High-Temperature Ceramic Electrocatalysts 201
6.3.2 Direct Utilization of Dry Hydrocarbons in SOFCs 204
6.4 Conclusions 205
References 207
7 Nanocatalysis for Iron-Catalyzed Fischer–Tropsch Synthesis: One Perspective 213
Uschi M. Graham, Gary Jacobs, and Burtron H. Davis
7.1 Introduction 213
7.2 Nanocatalyst–Wax Separation 213
7.2.1 Commercial Nanosized Iron Oxide 215
7.2.2 Nanosized Iron Oxide by Gas Phase Pyrolysis 218
7.2.3 Spray-Dried Clusters of Nanosized Iron Oxide 218
7.2.4 Precipitation of Unsymmetrical Nanosized Iron Oxide 220
7.2.5 Supported Iron Oxide Nanoparticles 221
7.2.6 Precipitation of Nanosized Iron Oxide Particles 225
7.3 Summary 229
References 229
8 The Contribution of Nanotechnology to Hydrogen Production 233
Sambandam Anandan, Jagannathan Madhavan, and Muthupandian Ashokkumar
8.1 Introduction 233
8.2 Hydrogen Production by Semiconductor Nanomaterials 235
8.2.1 General Approach 235
8.2.2 Need for Nanomaterials 236
8.2.3 Nanomaterials-Based Photoelectrochemical Cells for H2 Production 237
8.2.4 Semiconductors with Specific Morphology: Nanotubes and Nanodisks 239
8.2.5 Sensitization 245
8.3 Summary 253
Acknowledgments 254
References 254
Part Two Efficient Energy Storage 259
9 Nanostructured Materials for Hydrogen Storage 261
Saghar Sepehri and Guozhong Cao
9.1 Introduction 261
9.2 Hydrogen Storage by Physisorption 262
9.2.1 Nanostructured Carbon 263
9.2.2 Zeolites 264
9.2.3 Metal – Organic Frameworks 265
9.2.4 Clathrates 265
9.2.5 Polymers with Intrinsic Microporosity 266
9.3 Hydrogen Storage by Chemisorption 266
9.3.1 Metal and Complex Hydrides 266
9.3.2 Chemical Hydrides 269
9.3.3 Nanocomposites 270
9.4 Summary 273
References 273
10 Electrochemical Energy Storage: the Benefits of Nanomaterials 277
Patrice Simon and Jean-Marie Tarascon
10.1 Introduction 277
10.2 Nanomaterials for Energy Storage 280
10.2.1 From Rejected Insertion Materials to Attractive Electrode Materials 280
10.2.2 The Use of Once Rejected Si-Based Electrodes 282
10.2.3 Conversion Reactions 283
10.3 Nanostructured Electrodes and Interfaces for the Electrochemical Storage of Energy 285
10.3.1 Nanostructuring of Current Collectors/Active Film Interface 285
10.3.1.1 Self-Supported Electrodes 285
10.3.1.2 Nano-Architectured Current Collectors 285
10.3.2 Nanostructuring of Active Material/Electrolyte Interfaces 290
10.3.2.1 Application to Li-Ion Batteries: Mesoporous Chromium Oxides 290
10.3.2.2 Application to Electrochemical Double-Layer Capacitors 291
10.4 Conclusion 296
Acknowledgments 297
References 297
11 Carbon-Based Nanomaterials for Electrochemical Energy Storage 299
Elzbieta Frackowiak and François Béguin
11.1 Introduction 299
11.2 Nanotexture and Surface Functionality of sp2 Carbons 299
11.3 Supercapacitors 302
11.3.1 Principle of a Supercapacitor 302
11.3.2 Carbons for Electric Double-Layer Capacitors 304
11.3.3 Carbon-Based Materials for Pseudo-Capacitors 307
11.3.3.1 Pseudo-Capacitance Effects Related with Hydrogen Electrosorbed in Carbon 307
11.3.3.2 Pseudo-Capacitive Oxides and Conducting Polymers 310
11.3.3.3 Pseudo-Capacitive Effects Originated from Heteroatoms in the Carbon Network 312
11.4 Lithium-Ion Batteries 316
11.4.1 Anodes Based on Nanostructured Carbons 317
11.4.2 Anodes Based on Si/C Composites 318
11.4.3 Origins of Irreversible Capacity of Carbon Anodes 321
11.5 Conclusions 323
References 324
12 Nanotechnologies to Enable High-Performance Superconductors for Energy Applications 327
Claudia Cantoni and Amit Goyal
12.1 Overcoming Limitations to Superconductors’ Performance 327
12.2 Flux Pinning by Nanoscale Defects 329
12.3 Grain Boundary Problem 330
12.4 Anisotropic Current Properties 332
12.5 Enhancing Naturally Occurring Nanoscale Defects 335
12.6 Artifi cial Introduction of Flux Pinning Nanostructures 337
12.7 Self-Assembled Nanostructures 338
12.8 Effect of Local Strain Fields in Nanocomposite Films 344
12.9 Control of Epitaxy Enabling Atomic Sulfur Superstructure 347
Acknowledgments 349
References 350
Part Three Energy Sustainability 355
13 Green Nanofabrication: Unconventional Approaches for the Conservative Use of Energy 357
Darren J. Lipomi, Emily A. Weiss, and George M. Whitesides
13.1 Introduction 357
13.1.1 Motivation 358
13.1.2 Energetic Costs of Nanofabrication 359
13.1.3 Use of Tools 360
13.1.4 Nontraditional Materials 362
13.1.5 Scope 362
13.2 Green Approaches to Nanofabrication 364
13.2.1 Molding and Embossing 364
13.2.1.1 Hard Pattern Transfer Elements 364
13.2.1.2 Soft Pattern Transfer Elements 366
13.2.1.3 Outlook 369
13.2.2 Printing 370
13.2.2.1 Microcontact Printing 370
13.2.2.2 Dip-Pen Nanolithography 371
13.2.2.3 Outlook 372
13.2.3 Edge Lithography by Nanoskiving 372
13.2.3.1 The Ultramicrotome 374
13.2.3.2 Nanowires with Controlled Dimensions 374
13.2.3.3 Open- and Closed-Loop Structures 374
13.2.3.4 Linear Arrays of Single-Crystalline Nanowires 375
13.2.3.5 Conjugated Polymer Nanowires 378
13.2.3.6 Nanostructured Polymer Heterojunctions 379
13.2.3.7 Outlook 384
13.2.4 Shadow Evaporation 385
13.2.4.1 Hollow Inorganic Tubes 385
13.2.4.2 Outlook 387
13.2.5 Electrospinning 389
13.2.5.1 Scanned Electrospinning 390
13.2.5.2 Uniaxial Electrospinning 391
13.2.5.3 Core/Shell and Hollow Nanofibers 391
13.2.5.4 Outlook 393
13.2.6 Self-Assembly 393
13.2.6.1 Hierarchical Assembly of Nanocrystals 394
13.2.6.2 Block Copolymers 395
13.2.6.3 Outlook 397
13.3 Future Directions: Toward “Zero-Cost” Fabrication 397
13.3.1 Scotch-Tape Method for the Preparation of Graphene Films 397
13.3.2 Patterned Paper as a Low-Cost Substrate 398
13.3.3 Shrinky-Dinks for Soft Lithography 398
13.4 Conclusions 400
Acknowledgments 401
References 401
14 Nanocatalysis for Fuel Production 407
Gary Jacobs and Burtron H. Davis
14.1 Introduction 407
14.2 Petroleum Refining 408
14.3 Naphtha Reforming 408
14.4 Hydrotreating 420
14.5 Cracking 425
14.6 Hydrocracking 427
14.7 Conversion of Syngas 427
14.7.1 Water–Gas Shift 427
14.7.2 Methanol Synthesis 438
14.7.3 Fischer–Tropsch Synthesis 442
14.7.4 Methanation 451
14.8 Nanocatalysis for Bioenergy 454
14.9 The Future 461
References 462
15 Surface-Functionalized Nanoporous Catalysts towards Biofuel Applications 473
Brian G. Trewyn
15.1 Introduction 473
15.1.1 “Single Site” Heterogeneous Catalysis 474
15.1.2 Techniques for the Characterization of Heterogeneous Catalysts 475
15.2 Immobilization Strategies of Single Site Heterogeneous Catalysts 476
15.2.1 Supported Materials 476
15.2.2 Conventional Methods of Functionalization on Silica Surfaces 478
15.2.2.1 Noncovalent Binding of Homogeneous Catalysts 478
15.2.2.2 Surface Immobilization of Catalysts through Covalent Bonds 480
15.2.3 Alternative Synthesis of Immobilized Complex Catalysts on the Solid Support 487
15.3 Design of More Efficient Heterogeneous Catalysts with Enhanced Reactivity and Selectivity 488
15.3.1 Surface Interaction of Silica and Immobilized Homogeneous Catalysts 488
15.3.2 Reactivity Enhancement of Heterogeneous Catalytic System Induced by Site Isolation 491
15.3.3 Introduction of Functionalities and Control of Silica Support Morphology 494
15.3.4 Selective Surface Functionalization of Solid Support for Utilization of Nanospace Inside the Porous Structure 497
15.3.5 Cooperative Catalysis by Multifunctionalized Heterogeneous Catalyst System 503
15.3.6 Tuning the Selectivity of Multifunctionalized Heterogeneous Catalysts by the Gatekeeping Effect 504
15.3.7 Synergistic Catalysis by General Acid and Base Bifunctionalized MSN Catalysts 507
15.4 Other Heterogeneous Catalyst Systems on Nonsilica Supports 512
15.5 Conclusion 512
References 513
16 Nanotechnology for Carbon Dioxide Capture 517
Richard R. Willis, Annabelle Benin, Randall Q. Snurr, and Özgür Yazaydýn
16.1 Introduction 517
16.2 CO2 Capture Processes 522
16.3 Nanotechnology for CO2 Capture 524
16.4 Porous Coordination Polymers for CO2 Capture 529
References 553
17 Nanostructured Organic Light-Emitting Devices 561
Juo-Hao Li, Jinsong Huang, and Yang Yang
17.1 Introduction 561
17.2 Quantum Confinement and Charge Balance for OLEDs and PLEDs 563
17.2.1 Multilayer Structured OLEDs and PLEDs 563
17.2.2 Charge Balance in a Polymer Blended System 564
17.2.3 Interfacial Layer and Charge Injection 569
17.2.3.1 I–V Characteristics 570
17.2.3.2 Built-in Potential from Photovoltaic Measurement 571
17.2.3.3 XPS/UPS Study of the Interface 573
17.2.3.4 Comparison with Cs/Al Cathode 578
17.3 Phosphorescent Materials for OLEDs and PLEDs 579
17.3.1 Fluorescence and Phosphorescent Materials 579
17.3.2 Solution-Processed Phosphorescent Materials 580
17.4 Multi-Photon Emission and Tandem Structure for OLEDs and PLEDs 586
17.5 The Enhancement of Light Out-Coupling 587
17.6 Outlook for the Future of Nanostructured OLEDs and PLEDs 589
17.7 Conclusion 590
References 590
18 Electrochromics for Energy-Effi cient Buildings: Nanofeatures, Thin Films, and Devices 593
Claes-Göran Granqvist
18.1 Introduction 593
18.2 Electrochromic Materials 595
18.2.1 Functional Principles and Basic Materials 595
18.2.2 The Role of Nanostructure 598
18.2.3 The Cause of Optical Absorption 600
18.2.4 Survey over Transparent Conducting Thin Films 603
18.2.5 Electrolyte Functionalization 605
18.3 Electrochromic Devices 607
18.3.1 Six Challenges 607
18.3.2 Practical Constructions of Devices: a Brief Survey 608
18.3.3 Data on Foil-Based Devices with W Oxide and Ni Oxide 609
18.4 Conclusions and Remarks 612
References 613
Index 619














