logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Illumination, Color and Imaging: Evaluation and Optimization of Visual Displays

Illumination, Color and Imaging: Evaluation and Optimization of Visual Displays (Hardcover)

(Evaluation and Optimization of Visual Displays)

Tran Quoc Khanh, Peter Bodrogi (지은이)
John Wiley & Sons Inc
243,890원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
199,980원 -18% 0원
10,000원
189,980원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Illumination, Color and Imaging: Evaluation and Optimization of Visual Displays
eBook 미리보기

책 정보

· 제목 : Illumination, Color and Imaging: Evaluation and Optimization of Visual Displays (Hardcover) (Evaluation and Optimization of Visual Displays)
· 분류 : 외국도서 > 기술공학 > 기술공학 > 전자공학 > 일반
· ISBN : 9783527410408
· 쪽수 : 395쪽
· 출판일 : 2012-10-22

목차

Series Editor’s Foreword XIII

Preface XV

About the Authors XXI

1 Color Vision and Self-Luminous Visual Technologies 1

1.1 Color Vision Features and the Optimization of Modern Self-Luminous Visual Technologies 2

1.1.1 From Photoreceptor Structure to Colorimetry 2

1.1.2 Spatial and Temporal Contrast Sensitivity 6

1.1.3 Color Appearance Perception 12

1.1.4 Color Difference Perception 15

1.1.5 Cognitive, Preferred, Harmonic, and Emotional Color 17

1.1.6 Interindividual Variability of Color Vision 18

1.2 Color Vision-Related Technological Features of Modern Self-Luminous (Nonprinting) Visual Technologies 18

1.3 Perceptual, Cognitive, and Emotional Features of the Visual System and the Corresponding Technological Challenge 20

References 23

2 Colorimetric and Color Appearance-Based Characterization of Displays 25

2.1 Characterization Models and Visual Artifacts in General 25

2.1.1 Tone Curve Models and Phosphor Matrices 26

2.1.2 Measured Color Characteristics, sRGB, and Other Characterization Models 27

2.1.3 Additivity and Independence of the Color Channels 35

2.1.4 Multidimensional Phosphor Matrices and Other Methods 35

2.1.5 Spatial Uniformity and Spatial Independence 39

2.1.6 Viewing Direction Uniformity 45

2.1.7 Other Visual Artifacts 46

2.1.8 The Viewing Environment: Viewing Conditions and Modes 48

2.1.9 Application of CIELAB, CIELUV, and CIECAM02 to Self-Luminous Displays 49

2.2 Characterization Models and Visual Artifacts of the Different Display Technologies 51

2.2.1 Modern Applications of the Different Display Technologies 52

2.2.2 Special Characterization Models of the Different Displays 53

2.2.2.1 CRT 53

2.2.2.2 PDP 55

2.2.2.3 Various LCD Technologies and Their Viewing Direction Uniformity 60

2.2.2.4 Head-Mounted Displays and Head-Up Displays 67

2.2.2.5 Projectors Including DMD and LCD 68

2.2.2.6 OLEDs 71

2.3 Display Light Source Technologies 72

2.3.1 Projector Light Sources 73

2.3.2 Backlight Sources 75

2.3.3 Color Filters, Local Dimming, and High Dynamic Range Imaging 79

2.4 Color Appearance of Large Viewing Angle Displays 81

2.4.1 Color Appearance Differences between Small and Large Color Stimuli 81

2.4.1.1 Color Appearance of an Immersive Color Stimulus on a PDP 82

2.4.1.2 Xiao et al.’s Experiment on the Appearance of a Self-Luminous 508 Color Stimulus on an LCD 87

2.4.2 Mathematical Modeling of the Color Size Effect 87

References 91

3 Ergonomic, Memory-Based, and Preference-Based Enhancement of Color Displays 97

3.1 Ergonomic Guidelines for Displays 97

3.2 Objectives of Color Image Reproduction 105

3.3 Ergonomic Design of Color Displays: Optimal Use of Chromaticity Contrast 107

3.3.1 Principles of Ergonomic Color Design 107

3.3.2 Legibility, Conspicuity, and Visual Search 108

3.3.3 Chromaticity Contrast for Optimal Search Performance 111

3.3.4 Chromaticity and Luminance Contrast Preference 123

3.4 Long-Term Memory Colors, Intercultural Differences, and Their Use to Evaluate and Improve Color Image Quality 134

3.4.1 Long-Term Memory Colors for Familiar Objects 135

3.4.2 Intercultural Differences of Long-Term Memory Colors 139

3.4.3 Increasing Color Quality by Memory Colors 141

3.5 Color Image Preference for White Point, Local Contrast, Global Contrast, Hue, and Chroma 142

3.5.1 Apparatus andMethod to Obtain a Color Image Preference Data Set 143

3.5.2 Image Transforms of Color Image Preference 144

3.5.3 Preferred White Point 144

3.5.4 Preferred Local Contrast 147

3.5.5 Preferred Global Contrast 147

3.5.6 Preferred Hue and Chroma 150

3.6 Age-Dependent Method for Preference-Based Color Image Enhancement with Color Image Descriptors 151

References 156

4 Color Management and Image Quality Improvement for Cinema Film and TV Production 161

4.1 Workflow in Cinema Film and TV Production Today – Components and Systems 161

4.1.1 Workflow 161

4.1.2 Structure of Color Management in Today’s Cinema and TV Technology 164

4.1.3 Color Management Solutions 165

4.2 Components of the Cinema Production Chain 166

4.2.1 Camera Technology in Overview 166

4.2.2 Postproduction Systems 174

4.2.3 CIELAB and CIEDE 2000 Color Difference Formulas Under the Viewing Conditions of TV and Cinema Production 176

4.2.3.1 Procedure of the Visual Experiment 178

4.2.3.2 Experimental Results 181

4.2.4 Applications of the CIECAM02 Color Appearance Model in the Digital Image Processing System for Motion Picture Films 184

4.3 Color Gamut Differences 191

4.4 Exploiting the Spatial–Temporal Characteristics of Color Vision for Digital TV, Cinema, and Camera Development 195

4.4.1 Spatial and Temporal Characteristics in TV and Cinema Production 195

4.4.2 Optimization of the Resolution of Digital Motion Picture Cameras 199

4.4.3 Perceptual and Image Quality Aspects of Compressed Motion Pictures 205

4.4.3.1 Necessity of Motion Picture Compression 205

4.4.3.2 Methods of Image Quality Evaluation 205

4.4.3.3 The Image Quality Experiment 207

4.4.4 Perception-Oriented Development of Watermarking Algorithms for the Protection of Digital Motion Picture Films 214

4.4.4.1 Motivation and Aims of Watermarking Development 214

4.4.4.2 Requirements for Watermarking Technology 216

4.4.4.3 Experiment to Test Watermark Implementations 217

4.5 Optimum Spectral Power Distributions for Cinematographic Light Sources and Their Color Rendering Properties 223

4.6 Visually Evoked Emotions in Color Motion Pictures 229

4.6.1 Technical Parameters, Psychological Factors, and Visually Evoked Emotions 229

4.6.2 Emotional Clusters: Modeling Emotional Strength 231

References 233

5 Pixel Architectures for Displays of Three- and Multi-Color Primaries 237

5.1 Optimization Principles for Three- and Multi-Primary Color Displays to Obtain a Large Color Gamut 238

5.1.1 Target Color Sets 240

5.1.2 Factors of Optimization 244

5.1.2.1 Color Gamut Volume 244

5.1.2.2 Quantization Efficiency 244

5.1.2.3 Number of Color Primaries 245

5.1.2.4 White Point 245

5.1.2.5 Technological Constraints 246

5.1.2.6 P/W Ratio 247

5.1.2.7 Roundness 249

5.1.2.8 RGB Tone Scales and Display Black Point 250

5.2 Large-Gamut Primary Colors and Their Gamut in Color Appearance Space 250

5.2.1 Optimum Color Primaries 251

5.2.2 Optimum Color Gamuts in Color Appearance Space 252

5.3 Optimization Principles of Subpixel Architectures for Multi-Primary Color Displays 257

5.3.1 The Color Fringe Artifact 258

5.3.2 Optimization Principles 259

5.3.2.1 Minimum Color Fringe Artifact 259

5.3.2.2 Modulation Transfer Function 260

5.3.2.3 Isotropy 260

5.3.2.4 Luminance Resolution 261

5.3.2.5 High Aperture Ratio 261

5.4 Three- and Multi-Primary Subpixel Architectures and Color Image Rendering Methods 262

5.4.1 Three-Primary Architectures 262

5.4.2 Multi-Primary Architectures 264

5.4.3 Color Image Rendering Methods 268

Acknowledgment 270

References 271

6 Improving the Color Quality of Indoor Light Sources 273

6.1 Introduction to Color Rendering and Color Quality 273

6.2 Optimization for Indoor Light Sources to Provide a Visual Environment of High Color Rendering 276

6.2.1 Visual Color Fidelity Experiments 276

6.2.2 Color Rendering Prediction Methods 282

6.2.2.1 Deficits of the Current Color Rendering Index 282

6.2.2.2 Proposals to Redefine the Color Rendering Index 285

6.3 Optimization of Indoor Light Sources to Provide Color Harmony in the Visual Environment 286

6.3.1 Visual Color Harmony Experiments 287

6.3.2 Szab et al.’s Mathematical Model to Predict Color Harmony 287

6.3.3 A Computational Method to Predict Color Harmony Rendering 289

6.4 Principal Components of Light Source Color Quality 293

6.4.1 Factors Influencing Color Quality 293

6.4.2 Experimental Method to Assess the Properties of Color Quality 296

6.4.3 Modeling Color Quality: Four-Factor Model 302

6.4.4 Principal Components of Color Quality for Three Indoor Light Sources 303

6.5 Assessment of Complex Indoor Scenes Under Different Light Sources 304

6.5.1 Psychological Relationship between Color Difference Scales and Color Rendering Scales 305

6.5.2 Brightness in Complex Indoor Scenes in Association with Color Gamut, Rendering, and Harmony: A Computational Example 311

6.5.3 Whiteness Perception and Light Source Chromaticity 316

6.6 Effect of Interobserver Variability of Color Vision on the Color Quality of Light Sources 318

6.6.1 Variations of Color Vision Mechanisms 319

6.6.2 Effect of Variability on Color Quality 320

6.6.2.1 Variability of the Visual Ratings of Color Quality 321

6.6.2.2 Variability of Perceived Color Differences and the Color Rendering Index 321

6.6.2.3 Variability of Similarity Ratings 322

6.6.3 Relevance of Variability for Light Source Design 324

Acknowledgments 324

References 324

7 Emerging Visual Technologies 329

7.1 Emerging Display Technologies 329

7.1.1 Flexible Displays 329

7.1.2 Laser and LED Displays 330

7.1.3 Color Gamut Extension for Multi-Primary Displays 334

7.2 Emerging Technologies for Indoor Light Sources 339

7.2.1 Tunable LED Lamps for Accent Lighting 339

7.2.2 Optimization for Brightness and Circadian Rhythm 341

7.2.3 Accentuation of Different Aspects of Color Quality 347

7.2.4 Using New Phosphor Blends 348

7.2.5 Implications of Color Constancy for Light Source Design 354

7.3 Summary and Outlook 357

Acknowledgments 360

References 360

Index 363

저자소개

Tran Quoc Khanh (지은이)    정보 더보기
독일 다름슈타트테크니쉐대학에서 교수직과 광 기술 연구실의 대표를 맡고 있다. 독일 일메나우테크니쉐대학에서 광학 전공으로 학부를 졸업하고 광학 공학으로 박사학위를 받았으며 색도 측정과 색채 영상 처리를 주제로 교육 자격을 획득하였다. 독일 뮌헨 ARRI Cine Technik에서 과제 책임자로서 산업계에서의 경험을 쌓았고 독일 다름슈타트 자동 조명 국제 심포지엄의 저명한 시리즈를 조직해왔으며 국제조명위원회(CIE)의 여러 기술위원회 회원이다.
펼치기
Peter Bodrogi (지은이)    정보 더보기
독일 다름슈타트테크니쉐대학 광 기술 연구실의 선임 연구원이다. 학부 때 헝가리 부다페스트의 로란드외트뵈시(Lor?nd E?tv?s)대학에서 물리를 전공하였다. 헝가리 판노니아대학에서 정보 기술을 전공하여 박사학위를 받았다. 많은 과학 관련 출판물의 공동저자이고 색각과 자발광 디스플레이 기술과 관련된 특허권자이다. 독일의 알렉산더 폰 훔볼트 재단의 연구협회 및 영국의 월시-웨스턴 상(Walsh-Weston Award)을 포함한 여러 과학적 상을 수상하였으며 국제조명위원회(CIE)의 여러 기술위원회 회원이기도 하다.
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책