책 이미지

책 정보
· 분류 : 외국도서 > 컴퓨터 > 컴퓨터 공학
· ISBN : 9783540379515
· 쪽수 : 302쪽
· 출판일 : 2006-08-29
목차
Unsupervised Learning.- Simple and Effective Connectionist Nonparametric Estimation of Probability Density Functions.- Comparison Between Two Spatio-Temporal Organization Maps for Speech Recognition.- Adaptive Feedback Inhibition Improves Pattern Discrimination Learning.- Semi-supervised Learning.- Supervised Batch Neural Gas.- Fuzzy Labeled Self-Organizing Map with Label-Adjusted Prototypes.- On the Effects of Constraints in Semi-supervised Hierarchical Clustering.- A Study of the Robustness of KNN Classifiers Trained Using Soft Labels.- Supervised Learning.- An Experimental Study on Training Radial Basis Functions by Gradient Descent.- A Local Tangent Space Alignment Based Transductive Classification Algorithm.- Incremental Manifold Learning Via Tangent Space Alignment.- A Convolutional Neural Network Tolerant of Synaptic Faults for Low-Power Analog Hardware.- Ammonium Estimation in a Biological Wastewater Plant Using Feedforward Neural Networks.- Support Vector Learning.- Support Vector Regression Using Mahalanobis Kernels.- Incremental Training of Support Vector Machines Using Truncated Hypercones.- Fast Training of Linear Programming Support Vector Machines Using Decomposition Techniques.- Multiple Classifier Systems.- Multiple Classifier Systems for Embedded String Patterns.- Multiple Neural Networks for Facial Feature Localization in Orientation-Free Face Images.- Hierarchical Neural Networks Utilising Dempster-Shafer Evidence Theory.- Combining MF Networks: A Comparison Among Statistical Methods and Stacked Generalization.- Visual Object Recognition.- Object Detection and Feature Base Learning with Sparse Convolutional Neural Networks.- Visual Classification of Images by Learning Geometric Appearances Through Boosting.- An Eye Detection System Based on Neural Autoassociators.- Orientation Histograms for Face Recognition.- Data Mining in Bioinformatics.- An Empirical Comparison of Feature Reduction Methods in the Context of Microarray Data Classification.- Unsupervised Feature Selection for Biomarker Identification in Chromatography and Gene Expression Data.- Learning and Feature Selection Using the Set Covering Machine with Data-Dependent Rays on Gene Expression Profiles.