책 이미지
책 정보
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 기하학 > 기하학 일반
· ISBN : 9783540653400
· 쪽수 : 338쪽
· 출판일 : 2003-09-18
목차
I Derivatives.- 1. First Derivative.- 1. Derivative of a vector function.- 2. Linearity of differentiation.- 3. Derivative of a product.- 4. Derivative of the inverse of a function.- 5. Derivative of a composite function.- 6. Derivative of an inverse function.- 7. Derivatives of real-valued functions.- 2. The Mean Value Theorem.- 1. Rolle's Theorem.- 2. The mean value theorem for real-valued functions.- 3. The mean value theorem for vector functions.- 4. Continuity of derivatives.- 3. Derivatives of Higher Order.- 1. Derivatives of order n.- 2. Taylor's formula.- 4. Convex Functions of a Real Variable.- 1. Definition of a convex function.- 2. Families of convex functions.- 3. Continuity and differentiability of convex functions.- 4. Criteria for convexity.- Exercises on 1.- Exercises on 2.- Exercises on 3.- Exercises on 4.- II Primitives and Integrals.- 1. Primitives and Integrals.- 1. Definition of primitives.- 2. Existence of primitives.- 3. Regulated functions.- 4. Integrals.- 5. Properties of integrals.- 6. Integral formula for the remainder in Taylor's formula; primitives of higher order.- 2. Integrals Over Non-Compact Intervals.- 1. Definition of an integral over a non-compact interval.- 2. Integrals of positive functions over a non-compact interval.- 3. Absolutely convergent integrals.-3. Derivatives and Integrals of Functions Depending on a Parameter.- 1. Integral of a limit of functions on a compact interval.- 2. Integral of a limit of functions on a non-compact interval.- 3. Normally convergent integrals.- 4. Derivative with respect to a parameter of an integral over a compact interval.- 5. Derivative with respect to a parameter of an integral over a non-compact interval.- 6. Change of order of integration.- Exercises on 1.- Exercises on 2.- Exercises on 3.- III Elementary Functions.- 1. Derivatives of the Exponential and Circular Functions.- 1. Derivatives of the exponential functions; the number e.- 2. Derivative of logax.- 3. Derivatives of the circular functions; the number ?.- 4. Inverse circular functions.- 5. The complex exponential.- 6. Properties of the function ez.- 7. The complex logarithm.- 8. Primitives of rational functions.- 9. Complex circular functions; hyperbolic functions.- 2. Expansions of the Exponential and Circular Functions, and of the Functions Associated with Them.- 1. Expansion of the real exponential.- 2. Expansions of the complex exponential, of cos x and sin x.- 3. The binomial expansion.- 4. Expansions of log(1 + x), of Arc tan x and of Arc sin x.- Exercises on 1.- Exercises on 2.- Historical Note (Chapters I-II-III).- IV Differential Equations.- 1. Existence Theorems.- 1. The concept of a differential equation.- 2. Differential equations admitting solutions that are primitives of regulated functions.- 3. Existence of approximate solutions.- 4. Comparison of approximate solutions.- 5. Existence and uniqueness of solutions of Lipschitz and locally Lipschitz equations.- 6. Continuity of integrals as functions of a parameter.- 7. Dependence on initial conditions.- 2. Linear Differential Equations.- 1. Existence of integrals of a linear differential equation.- 2. Linearity of the integrals of a linear differential equation.- 3. Integrating the inhomogeneous linear equation.- 4. Fundamental systems of integrals of a linear system of scalar differential equations.- 5. Adjoint equation.- 6. Linear differential equations with constant coefficients.- 7. Linear equations of order n.- 8 Linear equations of order n with constant coefficients.- 9 Systems of linear equations with constant coefficients.- Exercises on 1.- Exercises on 2.- Historical Note.- V Local Study of Functions.- 1. Comparison of Functions on a Filtered Set.- 1. Comparison relations: I. Weak relations.- 2. Comparison relations: II. Strong relations.- 3. Change of variable.- 4. Comparison relations between strictly positive functions.- 5. Notation.- 2. Asymptotic Expansions.- 1. Scales of comparison.- 2. Prin














