책 이미지
책 정보
· 분류 : 외국도서 > 기술공학 > 기술공학 > 레이저/광기술
· ISBN : 9783540677178
· 쪽수 : 244쪽
· 출판일 : 2001-08-28
목차
1. Nonclassical Light.- 1.1 Classical Description of Light.- 1.2 Quantum Description of Light.- 1.3 Coherent State, Squeezed State and Number-Phase Squeezed State.- 1.4 Quantum Theory of Photodetection and Sub-Poisson Photon Distribution.- 1.5 Quantum Theory of Second-Order Coherence and Photon Antibunching.- 1.6 Quantum Theory of Photocurrent Fluctuation and Squeezing.- 2. Noise of p-n Junction Light Emitters.- 2.1 Introduction.- 2.2 Junction Voltage Dynamics: the Poisson Equation.- 2.3 Semiclassical Langevin Equation for Junction Voltage Dynamics.- 2.3.1 Mesoscopic Case (r ? 1).- 2.3.2 Macroscopic Case (r ? 1).- 2.4 Noise Analysis of an LED.- 2.4.1 Steady-State Conditions.- 2.4.2 Linearization.- 2.4.3 Photon-Number Noise.- 2.4.4 Noise in the External Circuit Current.- 2.4.5 Correlation Between Carrier Number and Junction Voltage.- 2.4.6 Correlation Between Photon Flux and Junction Voltage.- 2.5 Summary.- 3. Sub-Poissonian Light Generation in Light-Emitting Diodes.- 3.1 Introduction.- 3.2 Physical Mechanism of Pump-Noise Suppression.- 3.3 Measurement of the Squeezing Bandwidth.- 3.4 Summary.- 4. Amplitude-Squeezed Light Generation in Semiconductor Lasers.- 4.1 Introduction.- 4.2 Interferometric Measurement of Longitudinal-Mode-Partition Noise.- 4.2.1 Principle.- 4.2.2 Experimental Setup.- 4.3 Grating-Feedback External-Cavity Semiconductor Laser.- 4.3.1 Experimental Setup and Procedure.- 4.3.2 Experimental Results.- 4.3.3 Discussion.- 4.4 Injection-Locked Semiconductor Laser.- 4.4.1 Experimental Setup and Procedure.- 4.4.2 Experimental Results.- 4.4.3 Discussion.- 4.4.4 Modeling of the Noise of an Injection-Locked Laser.- 4.5 Summary.- 5. Excess Intensity Noise of a Semiconductor Laser with Nonlinear Gain and Loss.- 5.1 Introduction.- 5.2 Physical Models for Nonlinearity.- 5.2.1 Nonlinear Gain.- 5.2.2 Nonlinear Loss.- 5.3 Noise Analysis Using Langevin Rate Equations.- 5.4 Numerical Results.- 5.4.1 Numerical Parameters.- 5.4.2 Results.- 5.5 Discussion: Effect of Saturable Loss.- 5.6 Comparison of Two Laser Structures with Respect to Saturable Loss.- 5.6.1 Estimate of the Loss by Si DX Centers.- 5.6.2 Experimental Verification of the Saturable Loss.- 5.6.3 Explanation for the Excess Noise in QW Lasers.- 5.7 Summary.- 6. Transverse-Junction-Stripe Lasers for Squeezed Light Generation.- 6.1 Introduction.- 6.2 Fabrication.- 6.2.1 Si Diffusion and Intermixing.- 6.2.2 High V/III Ratio for Sharper Interfaces.- 6.2.3 P Doping by Zn Diffusion.- 6.2.4 Devices.- 6.3 DC Characterization: Threshold, Loss and Quantum Efficiency.- 6.4 Intensity Noise.- 6.4.1 Influence of High V/III Ratio.- 6.4.2 Optimization of External Coupling Efficiency.- 6.4.3 Polarization-Partition Noise.- 6.4.4 Longitudinal-Mode-Partition Noise.- 6.4.5 Suppressed 1/f Noise.- 6.5 Summary.- 7. Sub-Shot-Noise FM Spectroscopy.- 7.1 Introduction.- 7.2 Advantages of Semiconductor Lasers.- 7.3 Signal-to-Noise Ratio (SNR).- 7.4 Realization of Sub-Shot-Noise FM Spectroscopy.- 7.4.1 Frequency and Noise Control by Injection Locking.- 7.4.2 Effect of Injection Locking on Intensity Noise.- 7.4.3 Suppression of Residual AM by Injection-Locking.- 7.4.4 Suppression of Residual AM by Dual Pump Current Modulation.- 7.4.5 Expected Lineshape.- 7.4.6 Spectroscopic Setup.- 7.5 Experimental Results.- 7.6 Future Prospects.- 8. Sub-Shot-Noise FM Noise Spectroscopy.- 8.1 Introduction.- 8.2 Principle of FM Noise Spectroscopy.- 8.3 Signal-to-Noise Ratio and the Advantage of Amplitude Squeezing.- 8.4 Sub-Shot-Noise Spectroscopy.- 8.4.1 Experimental Setup.- 8.4.2 Laser Trapping and Cooling of Rb.- 8.4.3 Expected Optical Transitions in a Magneto-Optic Trap.- 8.4.4 Sample Probing.- 8.4.5 Experimental Result.- 8.5 Phase-Sensitive FM Noise Spectroscopy.- 8.5.1 Experimental Setup.- 8.5.2 Experimental Results.- 8.6 Summary.- 9. Sub-Shot-Noise Interferometry.- 9.1 Introduction.- 9.2 Sensitivity Limit of an Optical Interferometer.- 9.3 Amplitude-Squeezed Light Injection in a Dual-Input Mach-Zehnder Inte














