logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Symplectic Geometry of Integrable Hamiltonian Systems

Symplectic Geometry of Integrable Hamiltonian Systems (Paperback, 2003)

Michele Audin, Ana Cannas Da Silva, Eugene Lerman (지은이)
BIRKHAUSER
82,890원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
67,960원 -18% 0원
3,400원
64,560원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Symplectic Geometry of Integrable Hamiltonian Systems
eBook 미리보기

책 정보

· 제목 : Symplectic Geometry of Integrable Hamiltonian Systems (Paperback, 2003) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 기하학 > 미분기하학
· ISBN : 9783764321673
· 쪽수 : 226쪽
· 출판일 : 2003-04-24

목차

A Lagrangian Submanifolds.- I Lagrangian and special Lagrangian immersions in C".- I.1 Symplectic form on C", symplectic vector spaces.- Ll.a Symplectic vector spaces.- I.l.b Symplectic bases.- I.l.c The symplectic form as a differential form.- I.l.d The symplectic group.- I.l.e Orthogonality, isotropy.- 1.2 Lagrangian subspaces.- I.2.a Definition of Lagrangian subspaces.- I.2.b The symplectic reduction.- 1.3 The Lagrangian Grassmannian.- I.3.a The Grassmannian A"t as a homogeneous space.- I.3.b The manifold An.- I.3.c The tautological vector bundle.- I.3.d The tangent bundle to A".- I.3.e The case of oriented Lagrangian subspaces.- I.3.f The determinant and the Maslov class.- I.4 Lagrangian submanifolds in Cn.- I.4.a Lagrangian submanifolds described by functions.- I.4.b Wave fronts.- I.4.c Other examples.- I.4.d The Gauss map.- I.5 Special Lagrangian submanifolds in Cn.- I.5.a Special Lagrangian subspaces.- I.5.b Special Lagrangian submanifolds.- I.5.c Graphs of forms.- I.5.d Normal bundles of surfaces.- I.5.e From integrable systems.- I.5.f Special Lagrangian submanifolds invariant under SO(n)..- I.6 Appendices.- I.6.a The topology of the symplectic group.- I.6.b Complex structures.- I.6.c Hamiltonian vector fields, integrable systems.- Exercises.- II Lagrangian and special Lagrangian submanifolds in symplectic and Calabi-Yau manifolds.- II.1 Symplectic manifolds.- II.2 Lagrangian submanifolds and immersions.- II.2.a In cotangent bundles.- I1.3 Tubular neighborhoods of Lagrangian submanifolds.- II.3.a Moser's method.- II.3.b Tubular neighborhoods.- II.3.c"Moduli space" of Lagrangian submanifolds.- II.4 Calabi-Yau manifolds.- II.4.a Definition of the Calabi-Yau manifolds.- II.4.b Yau's theorem.- II.4.c Examples of Calabi-Yau manifolds.- II.4.d Special Lagrangian submanifolds.- II.5 Special Lagrangians in real Calabi-Yau manifolds.- II.5.a Real manifolds.- II.5.b Real Calabi-Yau manifolds.- II.5.c The example of elliptic curves 68.- II.5.d Special Lagrangians in real Calabi-Yau manifolds.- 11.6 Moduli space of special Lagrangian submanifolds.- I1.7 Towards mirror symmetry?.- II.7.a Fibrations in special Lagrangian submanifolds 74.- II.7.b Mirror symmetry.- Exercises.- B Symplectic Toric Manifolds.- I Symplectic Viewpoint.- I.1 Symplectic Toric Manifolds.- I.1.1 Symplectic Manifolds.- I.1.2 Hamiltonian Vector Fields.- I.1.3 Integrable Systems.- I.1.4 Hamiltonian Actions.- I.1.5 Hamiltonian Torus Actions.- 1.1.6 Symplectic Toric Manifolds.- I.2 Classification.- 1.2.1 Delzant's Theorem.- I.2.2 Orbit Spaces.- I.2.3 Symplectic Reduction.- I.2.4 Extensions of Symplectic Reduction.- I.2.5 Delzant's Construction.- I.2.6 Idea Behind Delzant's Construction.- I.3 Moment Polytopes.- I.3.1 Equivariant Darboux Theorem.- I.3.2 Morse Theory.- I.3.3 Homology of Symplectic Toric Manifolds.- I.3.4 Symplectic Blow-Up.- I.3.5 Blow-Up of Toric Manifolds.- I.3.6 Symplectic Cutting.- II Algebraic Viewpoint.- II.1 Toric Varieties.- II.1.1 Affine Varieties.- II.1.2 Rational Maps on Affine Varieties.- II.1.3 Projective Varieties.- II.1.4 Rational Maps on Projective Varieties.- II.1.5 Quasiprojective Varieties.- II.1.6 Toric Varieties.- II.2 Classification.- 1I.2.1 Spectra.- II.2.2 Toric Varieties Associated to Semigroups.- I1.2.3 Classification of Affine Toric Varieties.- II.2.4 Fans.- 1I.2.5 Toric Varieties Associated to Fans.- 1I.2.6 Classification of Normal Toric Varieties.- I1.3 Moment Polytopes.- II.3.1 Equivariantly Projective Toric Varieties.- II.3.2 Weight Polytopes.- II.3.3 Orbit Decomposition.- II.3.4 Fans from Polytopes.- II.3.5 Classes of Toric Varieties.- II.3.6 Symplectic vs. Algebraic.- C Geodesic Flows and Contact Toric Manifolds.- I From toric integrable geodesic flows to contact toric manifolds.- I.1 Introduction.- 1.2 Symplectic cones and contact manifolds.- II Contact group actions and contact moment maps.- III Proof of Theorem I.38.- III.1 Homogeneous vector bundles and slices.- III.2 The 3-dimensional case.- III.3 Uniqueness o

저자소개

Ana Cannas Da Silva (지은이)    정보 더보기
펼치기
Eugene Lerman (지은이)    정보 더보기
펼치기
이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책