책 이미지
책 정보
· 분류 : 국내도서 > 컴퓨터/모바일 > 프로그래밍 언어 > 파이썬
· ISBN : 9788931465914
· 쪽수 : 320쪽
· 출판일 : 2022-01-20
책 소개
목차
Chapter 1 딥러닝 시작
1.1 딥러닝이란
1.1.1 딥러닝의 역사
1.1.2 인공 신경망
1.1.3 최근 동향
1.2 파이썬과 파이토치
Chapter 2 파이썬
2.1 변수, 출력문, 라이브러리
2.1.1 정수형(int)
2.1.2 실수형(float)
2.1.3 문자형(string)
2.1.4 부울형(bool)
2.1.5 출력문(print)
2.1.6 라이브러리(library)
2.2 리스트, 튜플, 딕셔너리
2.2.1 리스트(list)
2.2.2 튜플(tuple)
2.2.3 딕셔너리(dict)
2.3 넘파이
2.3.1 여러 가지 배열
2.3.2 배열의 크기와 변환
2.3.3 조건문을 이용한 인덱스 검색
2.3.4 배열의 기본 연산
2.3.5 배열의 병합
2.3.6 다양한 계산 함수
2.4 조건문과 반복문
2.4.1 if문
2.4.2 for문
2.4.3 while문
2.4.4 break, continue문
2.4.5 try & except문
2.5 함수와 모듈
2.5.1 함수
2.5.2 모듈
2.6 클래스
2.7 그래프 그리기
2.8 폴더 및 파일 관리
2.9 터미널에서 파이썬 실행하기
Chapter 3 지도 학습
3.1 지도 학습이란
3.2 지도 학습의 종류
3.3 데이터 세트 분할
Chapter 4 파이토치 기본
4.1 텐서
4.1.1 여러 가지 텐서
4.1.2 리스트, 넘파이 배열을 텐서로 만들기
4.1.3 텐서의 크기, 타입, 연산
4.1.4 텐서의 크기 변환
4.1.5 텐서에서 넘파이 배열로 변환
4.1.6 단일 텐서에서 값으로 반환하기
4.2 역전파
4.2.1 그래디언트 텐서
4.2.2 자동 미분 ? 선형회귀식
4.3 데이터 불러오기
4.3.1 파이토치 제공 데이터 사용
4.3.2 같은 클래스 별로 폴더를 정리한 경우
4.3.3 정리되지 않은 커스텀 데이터 불러오기
4.3.4 커스텀 데이터와 커스텀 전처리 사용하기
4.3.5 커스텀 데이터와 파이토치 제공 전처리 사용하기
4.3.6 커스텀 전처리와 파이토치에서 제공하는 전처리 함께 사용하기
Chapter 5 인공 신경망
5.1 다층 퍼셉 트론
5.1.1 선형 회귀
5.1.2 집값 예측하기
5.2 활성화 함수
5.2.1 활성화 함수가 필요한 이유
5.2.2 선형 함수
5.2.3 시그모이드(sigmoid) 함수
5.2.4 tanh 함수
5.2.5 ReLU 함수
5.2.6 Softmax 함수
5.2.7 기타 활성화 함수
5.3 손실 함수
5.3.1 MAE
5.3.2 MSE
5.3.3 Cross Entropy Loss
5.3.4 기타 손실 함수
5.4 최적화 기법
5.4.1 확률적 경사하강법(SGD)
5.4.2 다양한 최적화 기법
5.4.3 스케줄링
5.4.4 MADGRAD
5.5 교차 검증
5.5.1 교차 검증을 통한 집값 예측 모델 평가
5.6 모델 구조 및 가중치 확인
5.6.1 모델 구조
5.6.2 모델 변수
Chapter 6 합성곱 신경망
6.1 합성곱 연산과 풀링 연산
6.1.1 이미지 데이터
6.1.2 MLP와 이미지 처리
6.1.3 합성곱 연산과 풀링 연산
6.2 ALEXNET
6.3 RESNET
6.4 다양한 합성곱 신경망
Chapter 7 순환 신경망
7.1 기본 순환 신경망
7.1.1 시계열 데이터
7.1.2 기본 인공 신경망과 순환 신경망
7.1.3 순환 신경망의 다양한 형태
7.1.4 기본 순환 신경망
7.1.5 기본 순환 신경망 구현
7.2 LSTM과 GRU
7.2.1 기본 RNN의 문제
7.2.2 LSTM
7.2.3 GRU
7.3 BI-LSTM
7.3.1 Bi-LSTM 구현하기
Chapter 8 비지도 학습
8.1 비지도 학습이란
8.2 K-평균 알고리즘
8.3 오토인코더
8.3.1 스택 오토인코더
8.3.2 디노이징 오토인코더
8.3.3 합성곱 오토인코더
8.4 생성적 적대 신경망
8.4.1 Vanilla GAN
8.4.2 Deep Convolutional GAN(DCGAN)
8.5 이미지 스타일 변이
8.6 깊은 K-평균 알고리즘
Chapter 9 성능 개선
9.1 과적합
9.1.1 데이터 증식
9.1.2 조기 종료
9.1.3 L2 정규화
9.1.4 드롭아웃
9.1.5 배치 정규화
9.1.6 교란 라벨
9.1.7 교란 값
9.1.8 라벨 스무딩
9.2 데이터 불균형
9.2.1 가중 무작위 샘플링
9.2.2 가중 손실 함수
9.2.3 혼동 행렬
9.3 전이 학습
9.3.1 사전 학습 모델
9.3.2 모델 프리징
9.4 준지도 학습
9.4.1 의사 라벨링
Chapter 10 시각화
10.1 설명 가능한 인공지능
10.1.1 Class Activation Map
10.2 차원 축소 기법
10.2.1 t-distributed Stochastic Neighbor Embedding
10.2.2 주성분 분석
Chapter 11 메타 학습
11.1 메타 러닝과 퓨샷 러닝
11.2 MAML - 회귀문제
11.3 MAML - 분류문제
Chapter 12 과학적 계산
12.1 유한차분법
12.2 은닉 유체 메카니즘
12.2.1 구조 설명
12.2.2 모듈 구성하기(HFM 폴더)
12.2.3 데이터 불러오기
12.2.4 모델 및 연산
12.2.5 모델 학습하기
12.2.6 모델 평가하기
12.2.7 코랩에서 파일 실행하기
부록 딥러닝 정보 습득 방법
저자소개
책속에서




















