logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

파이썬 딥러닝 머신러닝 입문

파이썬 딥러닝 머신러닝 입문

오승환 (지은이)
정보문화사
25,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
22,500원 -10% 0원
1,250원
21,250원 >
22,500원 -10% 0원
카드할인 10%
2,250원
20,250원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 17,000원 -10% 850원 14,450원 >

책 이미지

파이썬 딥러닝 머신러닝 입문
eBook 미리보기

책 정보

· 제목 : 파이썬 딥러닝 머신러닝 입문 
· 분류 : 국내도서 > 컴퓨터/모바일 > 프로그래밍 언어 > 파이썬
· ISBN : 9788956749006
· 쪽수 : 304쪽
· 출판일 : 2021-01-05

책 소개

코드를 직접 입력하고 실행하는 데 필요한 기본적인 환경을 ‘구글 코랩’을 활용하여 파이썬의 가장 기본적인 문법 중 핵심적인 내용만 간단하게 설명한다. 머신러닝과 딥러닝을 직접 경험해보고 싶지만 파이썬 초보자라면 이 책이 적합할 것이다.

목차

PART 01 개발 환경 설정
1. 구글 코랩이란?
2. 코랩 시작하기
2-1. 구글 계정 로그인
2-2. 구글 코랩 실행하기
3. "Hello, Colab" 코딩하기
4. 예제 파일 업로드하기

PART 02 파이썬 기초
1. 프로그래밍 기본 개념
1-1. 데이터 입력과 출력
1-2. 변수에 저장
1-3. 화면에 출력
2. 자료형
2-1. 숫자형
2-2. 문자열
2-3. 리스트
2-4. 투플
2-5. 딕셔너리
3. 연산자
3-1. 산술연산자
3-2. 논리연산자
3-3. 비교연산자
4. 제어문
4-1. 조건문(if)
4-2. for 반복문
4-3. while 반복문
4-4. 예외처리(try~except)
5. 함수
5-1. 사용자 정의 함수
5-2. 람다(lambda) 함수
5-3. 파이썬 내장 함수
6. 클래스

PART 03 머신러닝 입문
1. 판다스 자료구조
2. 머신러닝
2-1. 지도학습 vs. 비지도학습
2-2. 회귀 vs. 분류
2-3. 머신러닝 프로세스
3. 일차함수 관계식 찾기
3-1. 문제 파악
3-2. 데이터 탐색
3-3. 데이터 전처리
3-4. 모델 학습
3-5. 예측
4. 분류(Classification) - 붓꽃의 품종 판별
4-1. 데이터 로딩
4-2. 데이터 탐색
4-3. Train-Test 데이터셋 분할
4-4. 분류 알고리즘 ① - KNN
4-5. 분류 알고리즘 ② - SVM
4-6. 분류 알고리즘 ③ - 로지스틱 회귀
4-7. 분류 알고리즘 ④ - 의사결정나무
4-8. 앙상블 모델 ① - 보팅
4-9. 앙상블 모델 ② - 배깅
4-10. 앙상블 모델 ③ - 부스팅
4-11. 교차 검증 ① - Hold-out
4-12. 교차 검증 ② - K-fold
5. 회귀(Regression) - 보스턴 주택 가격 예측
5-1. 데이터 로딩
5-2. 데이터 탐색
5-3. 데이터 전처리
5-4. 베이스라인 모델 – 선형 회귀
5-5. 모델 성능 평가
5-6. 과대적합 회피(L2/L1 규제)
5-7. 트리 기반 모델 – 비선형 회귀

PART 04 머신러닝 응용
1. 사전 준비
1-1. 데이콘 경진 대회 데이터셋 다운로드
1-2. 구글 드라이브에 파일 업로드
1-3. 구글 드라이브 마운트
2. 데이터 탐색
2-1. 데이터 로딩
2-2. 데이터 구조
2-3. 결측값 확인
2-4. 상관 관계 분석
3. 베이스라인 모델
3-1. 데이터 결합
3-2. 데이터 전처리
3-3. 모델 학습 및 검증
3-4. 모델 예측
3-5. 데이콘 리더보드 점수 확인
4. 피처 엔지니어링(+EDA)
4-1. Survived : 생존 여부
4-2. Pclass : 객실 등급
4-3. Sex : 성별
4-4. Name : 이름
4-5. Age : 나이
4-6. SibSp : 형제자매/배우자
4-7. Parch : 부모/자식
4-8. Fare : 요금
4-9. Embarked : 탑승 항구
4-10. Cabin : 객실 구역
4-11. Ticket : 탑승권
5. 데이터 전처리
5-1. 레이블 인코딩
5-2. 원핫 인코딩
5-3. 피처 스케일링
6. 모델 학습
6-1. 피처 선택
6-2. 피처 중요도
6-3. 분류 확률값

PART 05 딥러닝 입문
1. 인공 신경망의 구조
1-1. 활성화 함수
1-2. 손실 함수
1-3. 옵티마이저(최적화 알고리즘)
1-4. 다층 신경망(MLP, Multi-Layer Perceptron)
2. 간단한 딥러닝 모델 만들기
2-1. Sequential API
2-2. 모델 컴파일
2-3. 모델 학습 및 예측
3. 딥러닝을 활용한 회귀 분석 : 보스턴 주택 가격 예측
3-1. 데이터 전처리
3-2. MLP 모델 아키텍처 정의
3-3. 미니 배치 학습
3-4. 교차 검증
4. 딥러닝을 활용한 분류 예측 : 와인 품질 등급 판별
4-1. 데이터 전처리
4-2. 모델 설계 : 드랍아웃 활용
4-3. 콜백 함수 : Early Stopping 기법
4-4. 예측값 정리 및 파일 제출

PART 06 딥러닝 응용
1. 이미지 분류 : Fashion MNIST 의류 클래스 판별
1-1. 데이터 전처리
1-2. 홀드아웃 교차 검증을 위한 데이터셋 분할
1-3. MLP 모델 학습
1-4. 합성곱 신경망(CNN)
1-5. 과대적합 방지
1-6. 사용자 정의 콜백 함수
2. 오토인코더 : 차원 축소와 이미지 복원
2-1. 기본 개념
2-2. 오토인코더 모델 만들기
3. 전이 학습 : 사전 학습 모델 활용
3-1. GPU 런타임 설정
3-2. CIFAR-10 데이터셋
3-3. 일반 합성곱 신경망(CNN)으로 분류 예측
3-4. 전이 학습으로 분류 예측
4. 자연어 처리(NLP) : IMDb 영화 리뷰 감성 분석
4-1. IMDb 영화 리뷰 데이터셋
4-2. 제로 패딩
4-3. 단어 임베딩
4-4. RNN
4-5. LSTM
4-6. GRU
5. 시계열 분석 : 전력 거래 가격 예측
5-1. 데이터 탐색
5-2. 데이터 전처리
5-3. LSTM 모델로 시계열 예측

저자소개

오승환 (지은이)    정보 더보기
과학고, 서울대를 졸업하고, 중국 CKGSB MBA, FRM(미국 재무위험관리사) 자격을 보유하고 있다. 국내 주요 금융기관과 대기업에서 기업분석과 전략기획 업무를 담당했다. IT 비전공자이지만 데이터 분석과 인공지능을 독학으로 시작해 현재는 핀테크 스타트업 대표이자 인공지능 강사로 활동하고 있다. 유튜브 ‘판다스 스튜디오’를 운영하며, 인프런에서 랭체인과 LLM 강의를 진행하고 있다. 저서로는 ‘파이썬 머신러닝 판다스 데이터 분석’ 등이 있다.
펼치기

책속에서



이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9788956749389