logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

머신 러닝 마스터 클래스

머신 러닝 마스터 클래스

(기본기를 바로잡는 9가지 레슨, 2025년도 대한민국학술원 선정 교육부 우수학술도서)

민재식 (지은이)
인사이트
25,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
22,500원 -10% 0원
1,250원
21,250원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
알라딘 판매자 배송 9개 18,000원 >
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 20,000원 -10% 1000원 17,000원 >

책 이미지

머신 러닝 마스터 클래스
eBook 미리보기

책 정보

· 제목 : 머신 러닝 마스터 클래스 (기본기를 바로잡는 9가지 레슨, 2025년도 대한민국학술원 선정 교육부 우수학술도서)
· 분류 : 국내도서 > 컴퓨터/모바일 > 인공지능
· ISBN : 9788966264636
· 쪽수 : 304쪽
· 출판일 : 2025-01-17

책 소개

머신 러닝 도서나 실무에서 익숙하게 접하는 기본 개념과 기법들. 하지만 왜 사용하는지, 어떤 경우에 사용하는지 물어본다면 제대로 설명할 수 있을까? 《머신 러닝 마스터 클래스》는 머신 러닝에서 널리 쓰여 개발자들에게 익숙하지만 정확하게 알지 못하는 개념과 기법 들을 설명한다.

목차

레슨 1 기계에게 상식적 판단 능력 심어주기
확률적 판단의 기본, 베이즈 정리
가장 그럴듯한 원인을 선택하는 행위, MLE
사전 정보의 등장으로 결과가 뒤집힌다, MAP
우리 일상 생활에서 활용되는 사전 정보
AI의 의사 결정을 돕는 사전 정보
맺는 말

레슨 2 확률 분포 해석하고 비교하기
엔트로피는 불확실성을 말해준다
불확실성은 곧 정보량이다
엔트로피는 정보의 가치이기도 하다
엔트로피는 결국 비용이다
확률 분포를 모르면 비용이 증가한다, 크로스 엔트로피
추가 비용을 수치화하다, KLD
엔트로피 패밀리의 무능함 1
엔트로피 패밀리의 무능함 2
가능한 대안, W 거리
너무나 원시적으로 사용되는 크로스 엔트로피
크로스 엔트로피 좀 더 잘 쓰기
맺는 말

레슨 3 날것의 숫자들을 확률 분포로
Softmax, 어울리지 않는 그 이름
왜 하필 지수 함수인가
확률 분포에 정답은 없다
맞춤형 확률 분포를 만들다
Sigmoid 함수와는 사촌 관계이다?
맺는 말

레슨 4 학습 가능 여부를 좌우하는 목표 함수
같으면서도 다른 두 목표 함수
로그 덕분에 일이 쉬워진 회귀
목표 함수에 로그를 씌우는 진짜 이유는?
학습이 나아갈 방향과 보폭, gradient
좋은 gradient, 나쁜 gradient
우리에게 이미 익숙한 log likelihood
맺는 말

레슨 5 엇나가는 학습 모델을 어떻게 제어하나
노이즈는 피할 수 없는 숙명이다
모델의 학습 과정에 적극 개입하다
이번에도 다시 한번 prior의 대활약
왜 작은 파라미터가 선호되는가
L1과 L2의 서로 다른 행보
배치 정규화의 등장, 그리고 가중치 감쇠의 위기
가중치 감쇠의 재평가
맺는 말

레슨 6 숨어 있는 변수를 찾아라, 없으면 만들어라
데이터 조작 시나리오
분포를 알면 창조는 쉽다
숨어있는 속성, 잠재 변수
섞인 성분을 분리해 내다, GMM
조인트 분포로 설명하다, VAE
분포가 아닌 함수로 설명하다, NF
단계별 과거로 현재를 설명하다, 디퓨전 모델
디퓨전이 필요한 이유
맺는 말

레슨 7 성능 수치에 현혹되지 말자
분류 모델 평가의 시작은 혼동 행렬
그들은 왜 specificity를 쓰는가
그런데 우리는 왜 precision을 쓰는가
임계치는 어디로 정해야 할까
그 모든 사정을 다 감안한 방법, AUC
클래스 불균형 상황에서의 AUC
그럼에도 AUC가 보여주지 못하는 것
검출 모델의 성능 지표, AP
정답이 없어도 채점은 가능하다
생성 이미지에 대한 반응을 점수화하다, IS
생성 이미지의 특징 분포를 점수화하다, FID
맺는 말

레슨 8 AI가 사는 그 세계, 고차원 공간 속으로
한 가지 의문에 대한 추적
고차원 공간에서 발생하는 신기한 현상들
고차원 가우시안 분포는 특이하게 생겼다?
고차원에서는 확률의 배신마저 일어난다
고차원에서는 안 해도 될 걱정들
차원의 저주인가 차원의 축복인가
맺는 말

레슨 9 자만에 빠진 AI, 그래서 미덥지 못한 AI
성능은 좋은데 믿음이 안 간다
자만은 AI 스스로에게도 도움이 안 된다
무엇이 그들을 자만하게 만들었나
자만에 빠지는 시점
자만에 빠지는 과정
겸손한 AI로 거듭나기
확신에 찬 오류, AI 할루시네이션
맺는 말

저자소개

민재식 (지은이)    정보 더보기
서울대학교에서 수학을, 포스텍과 University of South Florida에서 컴퓨터 비전을 전공했다. 네이버, 네이버랩스, 현대자동차 AIRS 등의 연구 개발 조직에서 십 년 넘게 컴퓨터 비전 및 머신 러닝 연구 개발자 그리고 기술 리더로 활동했다. 문제를 해결할 때 보유 기술을 어떻게든 활용하려는 방식보다는 문제의 본질을 잘 정의하고 실용적인 해법을 찾는 방식을 추구한다. 그런 사람들을 채용하고 그런 사람들과 같이 일해 왔다.
펼치기

추천도서

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9788966264698