logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Evolutionary Learning: Advances in Theories and Algorithms

Evolutionary Learning: Advances in Theories and Algorithms (Hardcover, 2019)

Zhi-Hua Zhou, Yang Yu, Chao Qian (지은이)
Springer
323,920원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
265,610원 -18% 0원
13,290원
252,320원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Evolutionary Learning: Advances in Theories and Algorithms
eBook 미리보기

책 정보

· 제목 : Evolutionary Learning: Advances in Theories and Algorithms (Hardcover, 2019) 
· 분류 : 외국도서 > 컴퓨터 > 인공지능(AI)
· ISBN : 9789811359552
· 쪽수 : 361쪽
· 출판일 : 2019-06-03

목차

Part I Introduction 1 Introduction 1.1 Machine Learning 1.2 Evolutionary Learning 1.3 Multi-objective Optimization 1.4 Organization of The Book 2 Preliminaries 2.1 Evolutionary Algorithms 2.2 Pseudo-Boolean Functions 2.3 Running Time Complexity 2.4 Markov Chain Modeling 2.5 Analysis Tools Part II Analysis Methodology 3 Running Time Analysis: Convergence-based Analysis 3.1 Convergence-based Analysis: Framework 3.2 Convergence-based Analysis: Application Illustration 3.3 Summary 4 Running Time Analysis: Switch Analysis 4.1 Switch Analysis: Framework 4.2 Switch Analysis: Application Illustration 4.3 Switch Analysis: Comparison 4.4 Summary 5 Approximation Analysis: SEIP 5.1 SEIP: Framework 5.2 SEIP: Application Illustration 5.3 Summary Part III Theoretical Perspectives 6 Boundary Problems of EAs 6.1 Boundary Problem Identification 6.2 Case Study 6.3 Summary 7 Recombination 7.1 Recombination Enabled MOEAs 7.2 Case Study: Artificial Problems 7.3 Case Study: Multi-Objective Minimum Spanning Trees 7.4 Empirical Study 7.5 Summary 8 Representation 8.1 Genetic Programming Representation 8.2 Case Study: Maximum Matchings 8.3 Case Study: Minimum Spanning Trees 8.4 Empirical Study 8.5 Summary 9 Inaccurate Fitness Evaluation 9.1 Noisy Optimization 9.2 Influence of Noisy Fitness 9.3 Denoise by Threshold Selection 9.4 Denoise by Sampling 9.5 Empirical Study 9.6 Summary 10 Population 10.1 Influence of Population 10.2 Robustness of Population to Noise 10.3 Summary 11 Constrained Optimization 11.1 Usefulness of Infeasible Solutions 11.2 Effectiveness of Pareto Optimization 11.3 Summary Part IV Learning Algorithms 12 Selective Ensemble 12.1 Selective Ensemble 12.2 The POSE Algorithm 12.3 Theoretical Analysis 12.4 Empirical Study 12.5 Summary 13 Subset Selection 13.1 Subset Selection 13.2 The POSS Algorithm 13.3 Theoretical Analysis 13.4 Empirical Study 13.5 Summary 14 Subset Selection: k -Submodular Maximization 14.1 Monotone k -Submodular Function Maximization 14.2 The PO k SS Algorithm 14.3 Theoretical Analysis 14.4 Empirical Study 14.5 Summary 15 Subset Selection: Ratio Minimization 15.1 Ratio Minimization of Monotone Submodular Functions 15.2 The PORM Algorithm 15.3 Theoretical Analysis 15.4 Empirical Study 15.5 Summary 16 Subset Selection: Noise 16.1 Noisy Subset Selection 16.2 The PONSS Algorithm 16.3 Theoretical Analysis 16.4 Empirical Study 16.5 Summary 17 Subset Selection: Acceleration 17.1 The PPOSS Algorithm 17.2 Theoretical Analysis 17.3 Empirical Study 17.4 Summary

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책