logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

Deep Learning and Practice with MindSpore

Deep Learning and Practice with MindSpore (Paperback)

Chen Lei (지은이), Yunhui Zeng (옮긴이)
Springer
322,980원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
264,840원 -18% 0원
13,250원
251,590원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Deep Learning and Practice with MindSpore
eBook 미리보기

책 정보

· 제목 : Deep Learning and Practice with MindSpore (Paperback) 
· 분류 : 외국도서 > 컴퓨터 > 인공지능(AI)
· ISBN : 9789811622359
· 쪽수 : 394쪽
· 출판일 : 2022-08-19

목차

Chapter 1 Introduction. 1

1.1             AI's Historical Changes 1

1.2             What Is Deep Learning?. 3

1.3             Practical Applications of Deep Learning. 4

1.4             Structure of the Book. 7

1.5             Introduction to MindSpore. 7

Chapter 2 Deep Learning Basics. 18

2.1             Regression Algorithms. 18

2.2             Gradient Descent 21

2.3             Classification Algorithms. 25

2.4             Overfitting and Underfitting. 28

Chapter 3 DNN.. 32

3.1             Feedforward Network. 32

3.2             Backpropagation. 34

3.3             Generalization Ability. 38

3.4             Implementing Simple Neural Networks Using MindSpore. 39

Chapter 4 Training of DNNs. 45

4.1             Main Challenges to Deep Learning Systems 45

4.2             Regularization. 48

4.3             Dropout 51

4.4             Adaptive Learning Rate. 55

4.5             Batch Normalization. 59

4.6             Implementing DNNs Using MindSpore. 61

Chapter 5 Convolutional Neural Network. 66

5.1             Convolution. 66

5.2             Pooling. 69

5.3             Residual Network. 71

5.4             Application: Image Classification. 74

5.5             Implementing Image Classification Based on the
DNN Using MindSpore. 79

Chapter 6 RNN.. 89

6.1             Overview.. 89

6.2             Deep RNN.. 90

6.3             Challenges of Long-Term Dependency. 91

6.4             LSTM Network and GRU.. 93

6.5             Application: Text Prediction. 96

6.6             Implementing Text Prediction Based on LSTM Using MindSpore. 97

Chapter 7 Unsupervised Learning: Word Vector. 101

7.1             Word2Vec. 102

7.2             GloVe. 114

7.3             Transformer 121

7.4             BERT.. 130

7.5             Comparison Between Typical Word Vector Generation Algorithms. 137

7.6             Application: Automatic Question Answering. 139

7.7             Implementing BERT-based Automatic Answering Using MindSpore. 154

Chapter 8 Unsupervised Learning: Graph Vector. 159

8.1             Graph Vector Overview.. 159

8.2             DeepWalk Algorithm... 161

8.3             LINE Algorithm... 166

8.4             Node2Vec Algorithm... 170

8.5             GCN Algorithm... 174

8.6             GAT Algorithm... 179

8.7             Application: Recommendation System.. 183

Chapter 9 Unsupervised Learning: Deep Generative Model 191

9.1             Variational Autoencoder 191

9.2             Generative Adversarial Network. 200

9.3             Application: Data Augmentation. 208

9.4             Implementing GAN-based Data Augmentation Using MindSpore. 221

Chapter 10 Deep Reinforcement Learning. 225

10.1           Basic Concepts of Reinforcement Learning. 225

10.2           Basic Solution Method. 230

10.3           Deep Reinforcement Learning Algorithm... 235

10.4           Latest Applications. 247

10.5           Implementing DQN-based Game Using MindSpore. 253

Chapter 11 Automated Machine Learning. 255

11.1           AutoML Framework. 255

11.2           Existing AutoML Systems. 278

11.3           Meta Learning. 288

11.4           Implementing AutoML Using MindSpore. 294

Chapter 12 Device-Cloud Collaboration. 302

12.1           On-device Inference. 302

12.2           Device-Cloud Transfer Learning. 304

12.3           Device-Cloud Federated Learning. 308

12.4           Device-Cloud Collaboration Framework. 313

Chapter 13 Deep Learning Visualization. 322

13.1           Overview.. 322

13.2           MindSpore Visualization. 337

Chapter 14 Data Preparation for Deep Learning. 354

14.1           Overview of Data Format 354

14.2           Data Format in Deep Learning. 355

14.3           Common Data Formats for Deep Learning. 362

14.4        Training Data Preparation Using the MindSpore Data Format 377

 

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책