logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

빅데이터 분석을 위한 스파크 2 프로그래밍

빅데이터 분석을 위한 스파크 2 프로그래밍

(대용량 데이터 처리부터 머신러닝까지, 개정판)

백성민 (지은이)
위키북스
35,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
31,500원 -10% 0원
1,750원
29,750원 >
31,500원 -10% 0원
카드할인 10%
3,150원
28,350원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
알라딘 판매자 배송 34개 1,500원 >
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

빅데이터 분석을 위한 스파크 2 프로그래밍
eBook 미리보기

책 정보

· 제목 : 빅데이터 분석을 위한 스파크 2 프로그래밍 (대용량 데이터 처리부터 머신러닝까지, 개정판)
· 분류 : 국내도서 > 컴퓨터/모바일 > 프로그래밍 개발/방법론 > 데이터베이스 프로그래밍 > 데이터베이스 구축
· ISBN : 9791158391034
· 쪽수 : 644쪽
· 출판일 : 2018-04-12

책 소개

스파크를 처음 접하는 입문자를 위한 안내서. 스파크를 처음 접하는 개발자들이 빠른 시간 내에 스파크가 무엇이고 어디에 어떻게 활용할 수 있는지 실무에 필요한 감을 잡을 수 있도록 스파크의 전체 모듈에 대한 설명과 예제를 담고 있다.

목차

▣ 01장: 스파크 소개
1.1 스파크
___1.1.1 빅데이터의 등장
___1.1.2 빅데이터의 정의
___1.1.3 빅데이터 솔루션
___1.1.4 스파크
___1.1.5 RDD(Resilient Distributed Dataset) 소개와 연산
___1.1.6 DAG
___1.1.7 람다 아키텍처
1.2 스파크 설치
___1.2.1 스파크 실행 모드의 이해
___1.2.2 사전 준비
___1.2.3 스파크 설치
___1.2.4 예제 실행
___1.2.5 스파크 셸
___1.2.6 실행 옵션
___1.2.7 더 살펴보기
1.3 개발 환경 구축
___1.3.1 로컬 개발 환경 구축
1.4 예제 프로젝트 설정
___1.4.1 WordCount 예제 실행
1.5 데이터프레임과 데이터셋
1.6 정리

▣ 02장: RDD
2.1 RDD
___2.1.1 들어가기에 앞서
___2.1.2 스파크컨텍스트 생성
___2.1.3 RDD 생성
___2.1.4 RDD 기본 액션
___2.1.5 RDD 트랜스포메이션
___2.1.6 RDD 액션
___2.1.7 RDD 데이터 불러오기와 저장하기
___2.1.8 클러스터 환경에서의 공유 변수
2.2 정리

▣ 03장: 클러스터 환경
3.1 클러스터 환경
___3.1.1 클러스터 모드와 컴포넌트
___3.1.2 클러스터 모드를 위한 시스템 구성
___3.1.3 드라이버 프로그램과 디플로이 모드
3.2 클러스터 매니저
___3.2.1 스탠드얼론 클러스터 매니저
___3.2.2 아파치 메소스
___3.2.3 얀
___3.2.4 히스토리 서버와 매트릭스
___3.2.5 쿠버네티스(Kubenetes)
3.3 정리

▣ 04장: 스파크 설정
4.1 스파크 프로퍼티
4.2 환경변수
4.3 로깅 설정
4.4 스케줄링
___4.4.1 애플리케이션 간의 자원 스케줄링
___4.4.2 단일 애플리케이션 내부에서의 자원 스케줄링
4.5 정리

▣ 05장: 스파크 SQL
5.1 데이터셋
5.2 연산의 종류와 주요 API
5.3 코드 작성 절차 및 단어 수 세기 예제
5.4 스파크세션
5.5 데이터프레임, 로우, 칼럼
___5.5.1 데이터프레임 생성
___5.5.2 주요 연산 및 사용법
5.6 데이터셋
___5.6.1 데이터셋 생성
___5.6.2 타입 트랜스포메이션 연산
5.7 하이브 연동
5.8 분산 SQL 엔진
5.9 Spark SQL CLI
5.10 쿼리플랜(Query Plan)과 디버깅
___5.10.1 스파크세션(SparkSession)과 세션스테이트(SessionState), 스파크컨텍스트(SparkContext)
___5.10.2 QueryExecution
___5.10.3 LogicalPlan과 SparkPlan
5.11 정리

▣ 06장: 스파크 스트리밍
6.1 개요 및 주요 용어
6.1.1 스트리밍컨텍스트
___6.1.2 DStream(Discretized Streams)
6.2 데이터 읽기
___6.2.1 소켓
___6.2.2 파일
___6.2.3 RDD 큐(Queue of RDD)
___6.2.4 카프카
6.3 데이터 다루기(기본 연산)
___6.3.1 print()
___6.3.2 map(func)
___6.3.3 flatMap(func)
___6.3.4 count(), countByValue()
___6.3.5 reduce(func), reduceByKey(func)
___6.3.6 filter(func)
___6.3.7 union()
___6.3.8 join()
6.4 데이터 다루기(고급 연산)
___6.4.1 transform(func)
___6.4.2 updateStateByKey()
___6.4.3 윈도우 연산
___6.4.4 window(windowLength, slideInterval)
___6.4.5 countByWindow(windowLength, slideInterval)
___6.4.6 reduceByWindow(func, windowLength, slideInterval)
___6.4.7 reduceByKeyAndWindow(func, invFunc, windowLength, slideInterval, [numTasks])
___6.4.8 countByValueAndWindow(windowLength, slideInterval, [numTasks])
6.5 데이터의 저장
___6.5.1 saveAsTextFiles(), saveAsObjectFiles(), saveAsHadoopFiles()
___6.5.2 foreachRDD()
6.6 CheckPoint
6.7 캐시
6.8 모니터링
6.9 주요 설정

▣ 07장: 스트럭처 스트리밍
7.1 개요
7.2 프로그래밍 절차
7.3 데이터프레임과 데이터셋 생성
7.4 스트리밍 연산
___7.4.1 기본 연산 및 집계 연산
___7.4.2 윈도우 연산
___7.4.3 워터마킹
___7.4.4 조인 연산
___7.4.5 스트리밍 중복 데이터 제거
___7.4.6 스트리밍 쿼리
7.5 정리

▣ 08장: MLlib
8.1 개요
8.2 관측과 특성
8.3 레이블
8.4 연속형 데이터와 이산형 데이터
8.5 알고리즘과 모델
8.6 파라메트릭 알고리즘
8.7 지도학습과 비지도학습
8.8 훈련 데이터와 테스트 데이터
8.9 MLlib API
8.10 의존성 설정
8.11 벡터와 LabeledPoint
___8.11.1 벡터
___8.11.2 LabeledPoint
8.12 파이프라인
8.13 알고리즘
___8.13.1 Tokenizer
___8.13.2 TF-IDF
___8.13.3 StringIndexer, IndexToString
8.14 회귀와 분류
___8.14.1 회귀
___8.14.2 분류
8.15 클러스터링
8.16 협업 필터링
8.17 정리

▣ 09장: SparkR
9.1 개요
9.2 R 설치 및 실행
9.3 데이터프레임
9.4 데이터프레임 생성
___9.4.1 R데이터프레임으로부터 생성
___9.4.2 파일로부터 생성
9.5 데이터프레임 연산
___9.5.1 조회 및 기본 연산
___9.5.2 그룹 및 집계 연산
___9.5.3 칼럼 연산
___9.5.4 집합 연산
___9.5.5 dapply(), dapplyCollect()
___9.5.6 gapply(), gapplyCollect()
___9.5.7 spark.lapply()
___9.5.8 createOrReplaceTempView()
___9.5.9 write()
9.6 하이브 연동
9.7 머신러닝
9.8 정리

▣ 10장: GraphX
10.1 주요 용어
___10.1.1 유방향 그래프
___10.1.2 유방향 멀티 그래프
___10.1.3 속성 그래프
10.2 데이터 타입
___10.2.1 RDD
___10.2.2 VertextID
___10.2.3 꼭짓점
___10.2.4 선(Edge)
___10.2.5 EdgeTriplet
___10.2.6 VertexRDD
___10.2.7 EdgeRDD
___10.2.8 Graph
10.3 그래프 생성
10.4 그래프 연산
___10.4.1 numEdges, numVertices
___10.4.2 inDegrees, outDegrees, degrees
___10.4.3 vertices, edges, triplets
___10.4.4 mapVertices(), mapEdges(), mapTriplets()
___10.4.5 reverse()
___10.4.6 subgraph()
___10.4.7 mask()
___10.4.8 groupEdges()
___10.4.9 joinVertices(), outerJoinVertices()
___10.4.10 collectNeighborIds(), collectNeighbors()
___10.4.11 aggregateMessages()
___10.4.12 pregel()
10.5 VertextRDD, EdgeRDD 연산
10.6 그래프 알고리즘
10.7 정리

▣ 부록: 스칼라란?
스칼라 설치
스칼라 셸
변수 타입과 변수 선언
Range와 형변환
클래스, 객체, 컴패니언 오브젝트
트레이트와 상속
apply
튜플과 옵션, 케이스클래스
패턴 매치
패키지 객체
type
임포트
함수와 메서드
제네릭
암묵적 변환과 타입 클래스 패턴
정리

저자소개

백성민 (지은이)    정보 더보기
어쩌다 시작한 개발이 천직이 되어 버린 행복한 개발자. 좋아하고 즐기는 일을 직업으로 가질 수 있음에 더없이 감사한 마음으로 살고 있다. 2001년 이후 줄곧 실무 개발자로 일하고 있으며 지금은 한 포털 회사에서 광고 데이터 분석 업무를 수행하고 있다. 올해는 책만 사서 쌓아두는 일을 그만하고 그동안 모아둔 책들을 한 권이라도 더 읽어봐야겠다는 다짐을 벌써 수년째 하고 있는 중이다. 번역서로 《거침없이 배우는 자바 파워 툴(지앤선, 2011)》이 있다.
펼치기

추천도서

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책