logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

머신러닝 시스템 설계

머신러닝 시스템 설계

(프로젝트 범위 산정부터 프로덕션 배포 후 모니터링까지, MLOps 완벽 해부하기)

칩 후옌 (지은이), 김대근, 김영민 (옮긴이)
한빛미디어
38,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
34,200원 -10% 0원
1,900원
32,300원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 30,400원 -10% 1520원 25,840원 >

책 이미지

머신러닝 시스템 설계
eBook 미리보기

책 정보

· 제목 : 머신러닝 시스템 설계 (프로젝트 범위 산정부터 프로덕션 배포 후 모니터링까지, MLOps 완벽 해부하기)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 소프트웨어 공학
· ISBN : 9791169210850
· 쪽수 : 436쪽
· 출판일 : 2023-03-14

책 소개

비즈니스 관점에서 머신러닝 시스템을 설계하고 운영할 때 맞닥뜨리는 모든 단계를 다룬다. 책에서 소개하는 다양한 접근법과 사례 연구는 머신러닝 시스템을 성공으로 이끌기 위한 인사이트를 제공한다.

목차

1장 머신러닝 시스템 개요
1.1 머신러닝을 사용해야 하는 경우
1.2 머신러닝 시스템 이해하기
1.3 정리

2장 머신러닝 시스템 설계 소개
2.1 비즈니스와 머신러닝의 목적
2.2 머신러닝 시스템 요구 사항
2.3 반복 프로세스
2.4 머신러닝 문제 구조화하기
2.5 지성 vs. 데이터
2.6 정리

3장 데이터 엔지니어링 기초
3.1 데이터 소스
3.2 데이터 포맷
3.3 데이터 모델
3.4 데이터 스토리지 엔진 및 처리
3.5 데이터플로 모드
3.6 배치 처리 vs. 스트림 처리
3.7 정리

4장 훈련 데이터
4.1 샘플링
4.2 레이블링
4.3 클래스 불균형 문제
4.4 데이터 증강
4.5 정리

5장 피처 엔지니어링
5.1 학습된 피처 vs. 엔지니어링된 피처
5.2 피처 엔지니어링 기법
5.3 데이터 누수
5.4 좋은 피처를 설계하는 방법
5.5 정리

6장 모델 개발과 오프라인 평가
6.1 모델 개발과 훈련
6.2 모델 오프라인 평가
6.3 정리

7장 모델 배포와 예측 서비스
7.1 머신러닝 배포에 대한 통념
7.2 배치 예측 vs. 온라인 예측
7.3 모델 압축
7.4 클라우드와 에지에서의 머신러닝
7.5 정리

8장 데이터 분포 시프트와 모니터링
8.1 머신러닝 시스템 장애 원인
8.2 데이터 분포 시프트
8.3 모니터링과 관찰 가능성
8.4 정리

9장 연속 학습과 프로덕션 테스트
9.1 연속 학습
9.2 프로덕션에서 테스트하기
9.3 정리

10장 MLOps를 위한 인프라와 도구
10.1 스토리지와 컴퓨팅
10.2 개발 환경
10.3 자원 관리
10.4 머신러닝 플랫폼
10.5 구축 vs. 구매
10.6 정리

11장 머신러닝의 인간적 측면
11.1 사용자 경험
11.2 팀 구조
11.3 책임 있는 AI
11.4 정리

저자소개

칩 후옌 (지은이)    정보 더보기
클레이폿 AI의 공동 창립자이자 CEO로서 실시간 머신러닝을 위한 인프라를 개발하고 있다. 이전에는 엔비디아, 스노클 AI, 넷플릭스에 재직하며 머신러닝 시스템을 개발하고 배포하는 일을 도왔으며, 스탠퍼드 학부생일 때는 ‘딥러닝 연구를 위한 텐서플로’라는 강의를 만들어 직접 학생들을 가르쳤다. 현재 스탠퍼드에서 이 책의 토대가 된 ‘CS 329S: 머신러닝 시스템 설계(Machine Learning Systems Design)’를 강의하고 있다. 전문 분야는 소프트웨어 엔지니어링과 머신러닝에 걸쳐 있으며, 링크드인 탑 보이스(Top Voices) 소프트웨어 개발 부문(2019)과 데이터 과학 및 머신러닝 부문(2020)에 이름을 올렸다.
펼치기
김대근 (옮긴이)    정보 더보기
머신러닝을 공부하기 시작했을 때 접한 톰 M. 미첼(Tom M. Mitchell)의 명언, “머신러닝으로 문제를 해결하려면 그 문제를 명확히 정의해야 한다”라는 말을 상기하며 항상 초심을 잃지 않으려 합니다. 학부 과정에서 컴퓨터 과학과 수학을 복수 전공하고 석사 과정에서 머신러닝을 전공했습니다. 여러 해 동안 스타트업, 제조 및 금융 업계를 거치며 컴퓨터 비전 엔지니어로서 다수의 1저자 특허를 등록하고 제품 양산에 기여했으며, 데이터 과학자로서 다양한 PoC와 현업 프로젝트를 수행했습니다. 현재는 클라우드 업계에서 고객의 비즈니스 요구 사항을 이해하고 문제를 해결하는 AI/ML 전문가로서 기술적인 도움을 주고 있습니다. 『머신러닝 시스템 설계』(한빛미디어, 2023)를 우리말로 옮겼습니다.
펼치기
김영민 (지은이)    정보 더보기
금융공학으로 파생상품 가치를 평가하는 증권사 퀀트로 일했습니다. 2015년 커리어를 바꾸어 IT와 금융 업계에서 데이터 과학자 및 ML 엔지니어로 일하면서 다양한 ML 서비스 론칭에 기여했습니다. 현재 AWS에서 엔터프라이즈의 비즈니스 문제를 머신러닝으로 해결하면서 고객 성공을 지원합니다. _현) 아마존 웹 서비스 데이터 과학자 _전) 현대카드 ML 엔지니어 _전) 넷마블 게임즈 데이터 과학자 _전) 신영증권 리스크 퀀트, CFA 저역서 _《머신러닝 시스템 설계》 공역
펼치기

책속에서



이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791169216630