logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

러닝 레이

러닝 레이

(대규모 모델 훈련에 효율적인 라이브러리로 빠르게 구현하는 파이썬 분산 처리)

막스 펌펄라, 에드워드 옥스, 리차드 리우 (지은이), 김완수 (옮긴이)
한빛미디어
25,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
22,500원 -10% 0원
1,250원
21,250원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 20,000원 -10% 1000원 17,000원 >

책 이미지

러닝 레이
eBook 미리보기

책 정보

· 제목 : 러닝 레이 (대규모 모델 훈련에 효율적인 라이브러리로 빠르게 구현하는 파이썬 분산 처리)
· 분류 : 국내도서 > 컴퓨터/모바일 > 인공지능
· ISBN : 9791169211949
· 쪽수 : 292쪽
· 출판일 : 2024-01-29

책 소개

파이썬 프로젝트를 쉽게 확장하는 오픈 소스 분산 컴퓨팅 프레임워크 레이를 시작해 보자. 이 책은 파이썬 프로그래머와 데이터 엔지니어, 데이터 과학자가 로컬에서 레이를 활용하고 컴퓨팅 클러스터를 구성하는 방법을 소개한다.

목차

Chapter 1 레이 살펴보기
1.1 레이는 무엇인가?
_1.1.1 레이가 추구하는 목적
_1.1.2 레이의 디자인 철학
_1.1.3 레이의 3가지 계층: 코어, 라이브러리, 생태계
1.2 분산 컴퓨팅 프레임워크
1.3 데이터 과학 라이브러리
_1.3.1 데이터 과학 워크플로
_1.3.2 데이터 처리
_1.3.3 모델 학습
_1.3.4 하이퍼파라미터 튜닝
_1.3.5 모델 서빙
1.4 성장하는 생태계
1.5 요약

Chapter 2 레이 코어로 시작하는 분산 컴퓨팅
2.1 레이 코어 소개
_2.1.1 레이 API를 활용한 첫 번째 예시
_2.1.2 레이 API 개요
2.2 레이 시스템 컴포넌트
_2.2.1 노드에서 태스크 스케줄링 및 실행
_2.2.2 헤드 노드
_2.2.3 분산된 스케줄링과 실행
2.3 레이를 사용한 간단한 맵리듀스 예시
_2.3.1 매핑과 셔플
_2.3.2 단어 수 축소(리듀스 단계)
2.4 요약

Chapter 3 분산 애플리케이션 개발
3.1 강화학습 소개
3.2 간단한 미로 문제 설정
3.3 시뮬레이션 구현
3.4 강화학습 모델 훈련
3.5 레이 분산 애플리케이션 구축
3.6 강화학습 용어 요약
3.7 요약

Chapter 4 레이 RLlib을 활용한 강화학습
4.1 RLlib 개요
4.2 RLlib 시작하기
_4.2.1 Gym 환경 구축
_4.2.2 RLlib CLI
_4.2.3 RLlib 파이썬 API
4.3 RLlib 실험 구성
_4.3.1 리소스 구성
_4.3.2 롤아웃 워커 구성
_4.3.3 환경 구성
4.4 RLlib 환경
_4.4.1 RLlib 환경 개요
_4.4.2 다중 에이전트
_4.4.3 정책 서버와 클라이언트 작동
4.5 고급 개념
_4.5.1 고급 환경 구축
_4.5.2 커리큘럼 학습 적용
_4.5.3 오프라인 데이터 작업
_4.5.4 다른 고급 주제
4.6 요약

Chapter 5 레이 튠을 활용한 하이퍼파라미터 최적화
5.1 하이퍼파라미터 튜닝
_5.1.1 레이를 사용한 랜덤 서치
_5.1.2 HPO가 어려운 이유
5.2 튠 소개
_5.2.1 튠의 작동 방식
_5.2.2 튠의 구성과 실행
5.3 튠을 활용한 머신러닝
_5.3.1 튠을 활용한 RLlib
_5.3.2 케라스 모델 튜닝
5.4 요약

Chapter 6 레이 데이터셋을 활용한 데이터 분산 처리
6.1 레이 데이터셋
_6.1.1 레이 데이터셋 기초
_6.1.2 레이 데이터셋 연산
_6.1.3 데이터셋 파이프라인
_6.1.4 예시: 병렬 분류기 복사본 훈련
6.2 외부 라이브러리 통합
6.3 머신러닝 파이프라인 구축
6.4 요약

Chapter 7 레이 트레인을 활용한 분산 모델 훈련
7.1 분산 모델 훈련의 기초
7.2 예시를 통한 레이 트레인 소개
_7.2.1 뉴욕시 택시 승차 시 팁 예측
_7.2.2 로드, 전처리, 피처화
_7.2.3 딥러닝 모델 정의
_7.2.4 레이 트레인을 활용한 모델 훈련
_7.2.5 분산 배치 추론
7.3 레이 트레인의 트레이너
_7.3.1 레이 트레인으로 마이그레이션
_7.3.2 트레이너 스케일 아웃
_7.3.3 레이 트레인을 활용한 전처리
_7.3.4 트레이너와 레이 튠의 통합
_7.3.5 콜백을 사용한 학습 모니터링
7.4 요약

Chapter 8 레이 서브를 활용한 온라인 추론
8.1 온라인 추론의 주요 특징
_8.1.1 계산 집약적 머신러닝 모델
_8.1.2 고립된 상태에서 유용하지 않은 머신러닝 모델
8.2 레이 서브 소개
_8.2.1 아키텍처 개요
_8.2.2 기본 HTTP 엔드포인트 정의
_8.2.3 확장 및 리소스 할당
_8.2.4 요청 배치 처리
_8.2.5 멀티모델 추론 그래프
8.3 엔드 투 엔드 예시: 자연어 처리 기반 API 구축
_8.3.1 콘텐츠 가져오기 및 전처리
_8.3.2 NLP 모델
_8.3.3 HTTP 처리 및 드라이버 로직
_8.3.4 통합
8.4 요약

Chapter 9 레이 클러스터를 활용한 스케일링
9.1 수동으로 레이 클러스터 생성
9.2 쿠버네티스에 배포
_9.2.1 첫 번째 쿠브레이 클러스터 설정
_9.2.2 쿠브레이 클러스터와 상호작용
_9.2.3 쿠브레이 노출
_9.2.4 쿠브레이 구성
_9.2.5 쿠브레이 로깅 구성
9.3 레이 클러스터 런처
_9.3.1 레이 클러스터 구성
_9.3.2 클러스터 런처 CLI
_9.3.3 레이 클러스터와 상호작용
9.4 클라우드 클러스터
_9.4.1 AWS
_9.4.2 기타 클라우드 제공자
9.5 오토스케일링
9.6 요약

Chapter 10 레이 AIR로 구성하는 데이터 과학 워크플로
10.1 AIR를 사용하는 이유
10.2 예시로 살펴보는 AIR의 핵심
_10.2.1 레이 데이터셋과 전처리기
_10.2.2 트레이너
_10.2.3 튜너와 체크포인트
_10.2.4 배치 예측기
_10.2.5 배포
10.3 AIR에 적합한 워크로드
_10.3.1 AIR 워크로드 실행
_10.3.2 AIR 메모리 관리
_10.3.3 AIR 고장 모델
_10.3.4 AIR 워크로드 오토스케일링
10.4 요약

Chapter 11 레이 생태계와 그 너머
11.1 성장하는 생태계
_11.1.1 데이터 로드와 처리
_11.1.2 모델 훈련
_11.1.3 모델 서빙
_11.1.4 커스텀 통합
_11.1.5 레이 통합 개요
11.2 레이 외 시스템
_11.2.1 분산 파이썬 프레임워크
_11.2.2 레이 AIR와 더 넓은 생태계
_11.2.3 AIR를 머신러닝 플랫폼에 통합하는 방법
11.3 앞으로 살펴볼만한 주제
11.4 요약

저자소개

에드워드 옥스 (지은이)    정보 더보기
애니스케일의 소프트웨어 엔지니어이자 레이 서브 개발을 주도하는 팀의 리더이며 레이 오픈소스 기여자입니다. 애니스케일에서 근무하기 전에는 UC 버클리의 EECS에서 학위를 수료했습니다.
펼치기
막스 펌펄라 (지은이)    정보 더보기
독일 함부르크에 사는 데이터 과학 교수이자 소프트웨어 엔지니어입니다. 매우 적극적인 오픈소스 기여자이며 여러 파이썬 패키지의 메인테이너로 활동 중입니다. 현재 애니스케일에서 소프트웨어 엔지니어로 일하고 있습니다. 이전에는 패스마인드의 제품 연구 책임자로서 레이 RLlib, 서브, 튠을 활용해 대규모 산업 애플리케이션을 위한 강화학습 설루션을 개발했으며, 스카이마인드에서 DL4J의 개발에 중요한 역할을 맡았습니다. 또한, 케라스 생태계의 성장과 확장을 도왔으며 하이퍼옵트의 메인테이너입니다.
펼치기
리차드 리우 (지은이)    정보 더보기
애니스케일의 소프트웨어 엔지니어이며 분산 머신러닝을 위한 오픈소스 도구를 연구하고 있습니다. UC 버클리 컴퓨터 과학과의 박사 과정에서 휴학 중으로 조셉 곤잘레스와 이온 스토이카, 켄 골드버그의 지도를 받고 있습니다.
펼치기
김완수 (옮긴이)    정보 더보기
AI 교육 스타트업 뤼이드에서 근무하고 있으며, 하이퍼옵트의 메인테이너로 활동했습니다. 선언적이면서 멱등성을 보장하고 재현 가능한 특성을 가진 소프트웨어를 매우 선호합니다. 오픈소스 생태계를 사랑하는 마음으로 주제를 가리지 않고 다양한 오픈소스 프로젝트에 적극적으로 기여하고 있습니다. 최근에는 특히 VIM과 Nix 생태계에 많은 관심을 두고 지켜보고 있습니다. 개인 개발 환경의 생산성 향상을 위해 회사 업무로 할 수 없는 극단적인 오버 엔지니어링과 자동화가 취미이며, 여가 활동으로 커스텀 키보드 제작을 즐깁니다.
펼치기

책속에서



이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791169217804