logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

데브옵스 엔지니어를 위한 실전 관찰 가능성 엔지니어링

데브옵스 엔지니어를 위한 실전 관찰 가능성 엔지니어링

(관찰 가능성의 시스템 구축과 문화 확산을 위한 가이드)

채리티 메이저, 리즈 퐁 존스, 조지 미란다 (지은이), 노승헌 (옮긴이)
한빛미디어
32,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
28,800원 -10% 0원
1,600원
27,200원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 25,600원 -10% 1280원 21,760원 >

책 이미지

데브옵스 엔지니어를 위한 실전 관찰 가능성 엔지니어링
eBook 미리보기

책 정보

· 제목 : 데브옵스 엔지니어를 위한 실전 관찰 가능성 엔지니어링 (관찰 가능성의 시스템 구축과 문화 확산을 위한 가이드)
· 분류 : 국내도서 > 컴퓨터/모바일 > 프로그래밍 개발/방법론 > 프로그래밍 기초/개발 방법론
· ISBN : 9791169212519
· 쪽수 : 388쪽
· 출판일 : 2024-06-07

책 소개

관찰 가능성은 복잡한 최신 시스템의 소프트웨어를 구축, 수정, 이해하는 데 매우 중요하다. 이 책은 관찰 가능성의 개념과 중요성을 설명하며, 현대 소프트웨어 시스템 관리에서 왜 관찰 가능성이 필요한지를 다룬다. 또한, 관찰 가능성과 모니터링의 차이점을 분석하고 각 접근 방식의 장단점을 비교한다.

목차

PART 1 관찰 가능성으로 가는 길

chapter 1 관찰 가능성이란?
_1.1 관찰 가능성의 수학적 정의
_1.2 소프트웨어 시스템에 대한 관찰 가능성 적용
_1.3 소프트웨어를 위한 관찰 가능성에 대한 잘못된 특성화
_1.4 왜 지금 관찰 가능성인가?
__1.4.1 이것이 정말 최선의 방법인가?
__1.4.2 메트릭과 모니터링이 충분하지 않은 이유
_1.5 메트릭을 이용한 디버깅과 관찰 가능성을 이용한 디버깅
__1.5.1 카디널리티의 역할
__1.5.2 디멘셔널리티의 역할
_1.6 관찰 가능성을 이용한 디버깅
_1.7 현대적인 시스템을 위한 관찰 가능성
요약

chapter 2 관찰 가능성과 모니터링의 디버깅은 어떻게 다를까?
_2.1 모니터링 데이터를 활용한 디버깅
__2.1.1 대시보드를 이용한 문제 해결
__2.1.2 직관을 통한 문제 해결의 한계
__2.1.3 사후 대응적일 수밖에 없는 기존 모니터링
_2.2 관찰 가능성을 통한 더 나은 디버깅
요약

chapter 3 관찰 가능성 없이 확장하며 배운 교훈
_3.1 메타가 인수한 MBaaS 기업 Parse
_3.2 Parse에서 경험했던 확장성
_3.3 현대적 시스템으로의 진화
_3.4 현대적 관행으로의 진화
_3.5 Parse의 전환 사례
요약

chapter 4 관찰 가능성은 어떻게 데브옵스, Sre, 클라우드 네이티브를 연결하는가
_4.1 클라우드 네이티브, 데브옵스, SRE에 대한 간단한 소개
_4.2 관찰 가능성: 디버깅의 과거와 오늘
_4.3 관찰 가능성을 통한 데브옵스와 SRE 프랙티스의 강화
요약

PART 2 관찰 가능성 기초

chapter 5 정형화된 이벤트: 관찰 가능성의 기본 구성 요소
_5.1 정형화된 이벤트를 이용한 디버깅
_5.2 메트릭을 기본 구성 요소로 사용하기 어려운 이유
_5.3 기존 로그를 기본 구성 요소로 사용하기 어려운 이유
__5.3.1 비정형 로그
__5.3.2 정형화된 로그
_5.4 디버깅 시 유용한 이벤트 속성
요약

chapter 6 이벤트를 추적으로 연결하기
_6.1 분산 추적이란 무엇이고 왜 중요한가?
_6.2 추적을 구성하는 컴포넌트
_6.3 어렵게 추적 계측하기
_6.4 추적 스팬에 사용자 정의 필드 추가하기
_6.5 이벤트를 추적으로 연결하기
요약

chapter 7 Opentelemetry를 이용한 계측
_7.1 계측이란?
_7.2 오픈 계측 표준
_7.3 코드를 이용한 계측
__7.3.1 자동 계측 시작하기
__7.3.2 사용자 정의 계측 추가하기
__7.3.3 백엔드 시스템으로 계측 데이터 전송하기
요약

chapter 8 관찰 가능성 확보를 위한 이벤트 분석
_8.1 알려진 조건 기반의 디버깅
_8.2 디버깅의 제1원칙
__8.2.1 핵심 분석 루프 사용하기
__8.2.2 핵심 분석 루프의 무차별 대입 자동화
_8.3 AIOps의 약속에 대한 오해
요약

chapter 9 관찰 가능성과 모니터링의 공존
_9.1 모니터링이 적합한 사례
_9.2 관찰 가능성이 적합한 사례
_9.3 대상 시스템, 소프트웨어에 따른 고려 사항
_9.4 조직의 요구사항 평가
__9.4.1 예외 무시할 수 없는 인프라 모니터링
__9.4.2 실전 예시
요약

PART 3 팀을 위한 관찰 가능성

chapter 10 관찰 가능성 사례 적용하기
_10.1 커뮤니티 그룹 참여하기
_10.2 가장 큰 고민거리에서 시작하기
_10.3 구축보다 구매
_10.4 반복을 통한 계측 구체화
_10.5 기존의 노력을 최대한 활용하기
_10.6 관찰 가능성 적용의 최종 관문
요약

chapter 11 관찰 가능성 주도 개발
_11.1 테스트 주도 개발
_11.2 개발 생애주기 내에서의 관찰 가능성
_11.3 디버그 지점의 결정
_11.4 마이크로서비스 시대의 디버깅
_11.5 계측이 관찰 가능성 도입을 촉진하는 방법
_11.6 관찰 가능성의 조기 투입
_11.7 소프트웨어 배포 가속화를 위한 관찰 가능성 활용
요약

chapter 12 신뢰성을 위한 SLO의 활용
_12.1 전통적 모니터링 접근 방법이 낳은 알람에 대한 피로감
_12.2 알려진 무지만을 위한 임계치 기반의 알람
_12.3 중요한 것은 사용자 경험이다
_12.4 SLO란 무엇인가?
__12.4.1 SLO 기반의 신뢰성 있는 알람
__12.4.2 사례 연구: SLO 기반의 알람 문화 변화
요약

chapter 13 SLO 기반 알람 대응과 디버깅
_13.1 오류 예산이 소진되기 전에 경고하기
_13.2 슬라이딩 윈도우를 이용한 시간 범위 설정
_13.3 오류 예산 소진 알람 생성을 위한 예측
__13.3.1 룩어헤드 윈도우
__13.3.2 베이스라인 윈도우
__13.3.3 SLO 소진 알람 대응하기
_13.4 관찰 가능성 데이터와 시계열 데이터를 이용한 SLO 측정의 차이
요약

chapter 14 관찰 가능성과 소프트웨어 공급망
_14.1 슬랙이 관찰 가능성을 도입한 이유
_14.2 계측: 공유 클라이언트 라이브러리와 디멘션
_14.3 사례 연구: 소프트웨어 공급망에 관찰 가능성 적용하기
__14.3.1 도구를 이용한 문맥의 이해
__14.3.2 실행 가능한 알람 내장하기
__14.3.3 변경사항 이해하기
요약

PART 4 규모에 맞는 관찰 가능성 시스템 구축

chapter 15 투자 회수 관점에서 본 구축과 구매
_15.1 관찰 가능성의 ROI 분석 방법
_15.2 자체 구축 비용
__15.2.1 무료 소프트웨어 사용의 숨겨진 비용
__15.2.2 자체 구축의 장점
__15.2.3 자체 구축의 위험성
_15.3 상용 소프트웨어 실제 도입 비용
__15.3.1 상용 소프트웨어 도입의 숨겨진 재무적 비용
__15.3.2 상용 소프트웨어 도입의 숨겨진 비재무적 비용
__15.3.3 상용 소프트웨어 도입의 이점
__15.3.4 상용 소프트웨어 구매의 위험성
_15.4 자체 구축과 상용 소프트웨어 도입은 옳고 그름의 문제가 아니다
요약

chapter 16 효율적인 데이터 스토리지
_16.1 관찰 가능성을 위한 기능적 요구사항
__16.1.1 관찰 가능성에 부적합한 시계열 데이터베이스
__16.1.2 다른 데이터 저장소 후보들
__16.1.3 데이터 스토리지 전략
_16.2 사례 연구: 허니컴 리트리버의 구현
__16.2.1 시간 단위로 데이터 파티셔닝하기
__16.2.2 세그먼트 내에 열별로 데이터 저장하기
__16.2.3 쿼리 작업 수행하기
__16.2.4 추적 쿼리하기
__16.2.5 실시간으로 데이터 쿼리하기
__16.2.6 티어링을 활용한 비용 효율적인 쿼리 처리
__16.2.7 병렬 처리를 통해 빠르게 만들기
__16.2.8 높은 카디널리티 다루기
__16.2.9 확장성과 내구성 전략
__16.2.10 효율적인 자체 데이터 스토어 구축을 위한 고려 사항
요약

chapter 17 샘플링: 비용과 정확성 모두를 위한 선택
_17.1 데이터 수집을 정제하기 위한 샘플링
_17.2 샘플링에 대한 다양한 접근 방법
__17.2.1 고정 확률 샘플링
__17.2.2 최신 트래픽 볼륨 기반의 샘플링
__17.2.3 이벤트 콘텐츠(키) 기반 샘플링
__17.2.4 키, 메서드 조합을 통한 샘플링
__17.2.5 동적 샘플링 옵션 선택
__17.2.6 추적에 대한 샘플링 결정 시점
_17.3 샘플링 전략의 코드화
__17.3.1 기본 시나리오
__17.3.2 고정 비율 샘플링
__17.3.3 샘플링 비율의 기록
__17.3.4 일관성 있는 샘플링
__17.3.5 목표 비율 샘플링
__17.3.6 하나 이상의 정적 샘플링 비율 사용하기
__17.3.7 키와 목표 비율을 이용한 샘플링
__17.3.8 많은 키를 지원하는 동적 비율 샘플링
__17.3.9 여러 가지 샘플링 방법의 동시 적용
요약

chapter 18 파이프라인을 이용한 원격 측정 관리
_18.1 원격 측정 파이프라인의 속성
__18.1.1 라우팅
__18.1.2 보안과 규제 준수
__18.1.3 워크로드의 격리
__18.1.4 데이터 버퍼링
__18.1.5 용량 관리
__18.1.6 데이터 필터링 및 증강
__18.1.7 데이터 변환
__18.1.8 데이터 품질과 일관성 보장
_18.2 원격 측정 파이프라인의 관리 자세히 살펴보기
_18.3 원격 측정 파이프라인 관리 시 당면 과제
__18.3.1 성능
__18.3.2 정확성
__18.3.3 가용성
__18.3.4 신뢰성
__18.3.5 격리
__18.3.6 데이터 신선도
_18.4 사례 연구: 슬랙에서의 원격 측정 관리
__18.4.1 메트릭 집계
__18.4.2 로그와 추적 이벤트
_18.5 오픈소스 대안들
_18.6 원격 측정 파이프라인 관리: 구축할 것인가 구매할 것인가
요약

PART 5 관찰 가능성 문화의 확산

chapter 19 관찰 가능성 비즈니스 사례
_19.1 변화에 대한 사후 대응적인 접근 방법
_19.2 관찰 가능성의 투자 수익률
_19.3 변경에 대한 적극적인 접근 방법
_19.4 사례로서의 관찰 가능성 소개
_19.5 적절한 도구를 이용한 관찰 가능성 실천
__19.5.1 계측
__19.5.2 데이터 저장소와 분석
__19.5.3 도구의 출시
_19.6 충분한 관찰 가능성을 확보했는지 인식하기
요약

chapter 20 관찰 가능성의 이해관계자와 조력자
_20.1 비엔지니어링 관찰 가능성 요구사항의 식별
_20.2 실무에서 관찰 가능성 조력자 만들기
__20.2.1 고객 지원팀
__20.2.2 고객 성공팀과 제품팀
__20.2.3 영업팀과 경영팀
_20.4 관찰 가능성 도구와 비즈니스 인텔리전스 도구의 차이점
__20.4.1 쿼리 실행 시간
__20.4.2 정확도
__20.4.3 최신성
__20.4.4 데이터 구조
__20.4.5 시간 범위
__20.4.6 일시성
_20.5 실무에서 관찰 가능성과 BI 도구 함께 사용하기
요약

chapter 21 관찰 가능성 성숙도 모델
_21.1 성숙도 모델에 대한 기본적인 이해
_21.2 관찰 가능성 성숙도 모델이 필요한 이유
_21.3 관찰 가능성 성숙도 모델
_21.4 관찰 가능성 성숙도 모델의 기능들
__21.4.1 시스템 실패에 대한 탄력성
__21.4.2 완성도 높은 코드의 배포
__21.4.3 소프트웨어 복잡도와 기술 부채의 관리
__21.4.4 예측 가능한 릴리스
__21.4.5 사용자 동작의 이해
_21.5 조직을 위한 관찰 가능성 성숙도 모델 적용
요약

chapter 22 관찰 가능성의 미래
_22.1 관찰 가능성의 과거와 현재
_22.2 보충 자료
_22.3 관찰 가능성의 미래

저자소개

채리티 메이저 (지은이)    정보 더보기
허니컴의 공동 창립자이자 CTO이면서 『데이터베이스 신뢰성 엔지니어링』(에이콘, 2023)의 공동 저자이기도 합니다. 이전에는 Parse, 페이스북, Linden Lab 등에서 시스템 엔지니어, 엔지니어링 매니저로 근무했습니다.
펼치기
리즈 퐁 존스 (지은이)    정보 더보기
개발자 애드보킷과 사이트 신뢰성 엔지니어로 업계에서 17년 이상 근무한 베테랑입니다. 허니컴에서 SRE와 관찰 가능성 커뮤니티의 애드보킷으로 활동 중입니다.
펼치기
조지 미란다 (지은이)    정보 더보기
시스템 엔지니어였지만 현재는 허니컴에서 제품 마케터이자 시장 마케팅 전략 리더로 활동하고 있습니다. 15년 이상 금융 업계와 비디오 게임 업계에서 대규모 분산 시스템을 구축하는 일을 해왔습니다.
펼치기
노승헌 (지은이)    정보 더보기
눈물 없이 볼 수 없는 한 편의 뮤직비디오 같은 인생을 만드느라 바쁜 센티멘털리스트. 삼성네트웍스, SK텔레콤, 아카마이 코리아를 거치면서 개발자, 프로젝트 매니저, 제품 오너, 솔루션 아키텍트 등 다양한 영역에서 자신을 시험해보고 있다. 현재는 라인플러스 Enablement Engineering 팀에서 LINE의 다양한 서비스가 쾌적한 사용자 경험을 제공할 수 있도록 이슈를 관찰하고 문제를 해결하는 역할을 수행하고 있다. 집필한 도서로 『나는 LINE 개발자입니다』(한빛미디어, 2019, 공저), 『슬랙으로 협업하기』(위키북스, 2017), 『소셜 네트워크로 세상을 바꾼 사람들』(길벗, 2013), 번역한 도서는 『데브옵스 엔지니어를 위한 실전 관찰 가능성 엔지니어링』(한빛미디어, 2024), 『관찰가능성 엔지니어링』(한빛미디어, 2023) 등이 있습니다.
펼치기

책속에서



이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791169218245