logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

쉽고 빠르게 익히는 실전 LLM

쉽고 빠르게 익히는 실전 LLM

(최신 LLM 활용법부터 RAG, 멀티모달 트랜스포머, RLHF/RLAIF까지, 2판)

시난 오즈데미르 (지은이), 신병훈 (옮긴이)
한빛미디어
30,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
27,000원 -10% 0원
1,500원
25,500원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 24,000원 -10% 1200원 20,400원 >

책 이미지

쉽고 빠르게 익히는 실전 LLM
eBook 미리보기

책 정보

· 제목 : 쉽고 빠르게 익히는 실전 LLM (최신 LLM 활용법부터 RAG, 멀티모달 트랜스포머, RLHF/RLAIF까지, 2판)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 자료구조/알고리즘
· ISBN : 9791169213653
· 쪽수 : 428쪽
· 출판일 : 2025-03-31

책 소개

LLM 개발 단계별 가이드, 모범 사례, 실제 사례 연구, 실습 예제를 통해 LLM이 생소했던 사람도 당장 개발을 시작할 수 있을 만큼 LLM에 대한 전반적인 지식을 쉽고 친절하게 설명한다. 또한, LLM을 현업에서 최적화하고 배포하는 실무적인 내용까지 다루어, 입문자부터 전문가까지 폭넓게 활용할 수 있는 완성형 가이드이다.

목차

PART 1 LLM 소개
CHAPTER 1 LLM의 세계로
_1.1 LLM이란?
_1.2 많이 사용되는 LLM
_1.3 LLM을 이용한 애플리케이션
_1.4 마치며

CHAPTER 2 LLM을 이용한 의미 기반 검색
_2.1 들어가는 글
_2.2 작업
_2.3 솔루션 개요
_2.4 구성 요소
_2.5 통합
_2.6 클로즈드 소스 구성 요소의 비용
_2.7 마치며

CHAPTER 3 프롬프트 엔지니어링의 첫 번째 단계
_3.1 들어가는 글
_3.2 프롬프트 엔지니어링
_3.3 여러 모델과 프롬프트 작업하기
_3.4 마치며

CHAPTER 4 AI 생태계: 조각 맞추기
_4.1 들어가는 글
_4.2 끊임없이 변화하는 클로즈드 소스 AI의 성능
_4.3 AI 추론 vs 생각
_4.4 사례 연구 1: 검색 증강 생성(RAG)
_4.5 사례 연구 2: 자동화된 AI 에이전트
_4.6 마치며

PART 2 LLM 활용법
CHAPTER 5 맞춤형 미세 조정으로 LLM 최적화하기
_5.1 들어가는 글
_5.2 미세 조정과 전이학습: 기초 안내서
_5.3 오픈AI 미세 조정 API 살펴보기
_5.4 오픈AI CLI로 맞춤형 예제 준비하기
_5.5 오픈AI CLI 설정하기
_5.6 첫 번째 미세 조정 LLM
_5.7 마치며

CHAPTER 6 고급 프롬프트 엔지니어링
_6.1 들어가는 글
_6.2 프롬프트 인젝션 공격
_6.3 입력/출력 유효성 검사
_6.4 배치 프롬프팅
_6.5 프롬프트 체이닝
_6.6 사례 연구: AI는 수학을 얼마나 잘하나?
_6.7 마치며

CHAPTER 7 임베딩과 모델 아키텍처 맞춤화
_7.1 들어가는 글
_7.2 사례 연구: 추천 시스템 만들기
_7.3 마치며

CHAPTER 8 AI 정렬: 제1원리
_8.1 들어가는 글
_8.2 누구에게, 그리고 어떤 목적에 맞춰 정렬할 것인가?
_8.3 편향 완화 도구로서의 정렬
_8.4 정렬의 핵심 원칙
_8.5 헌법 AI: 자기 정렬을 향한 한 걸음
_8.6 마치며

PART 3 고급 LLM 사용법
CHAPTER 9 파운데이션 모델을 넘어서
_9.1 들어가는 글
_9.2 사례 연구: VQA
_9.3 사례 연구: 피드백 기반 강화 학습
_9.4 마치며

CHAPTER 10 고급 오픈 소스 LLM 미세 조정
_10.1 들어가는 글
_10.2 예시: BERT를 이용한 애니메이션 장르 다중 레이블 분류
_10.3 예시: GPT-2를 이용한 LaTeX 생성
_10.4 시난의 현명하면서도 매력적인 답변 생성기: SAWYER
_10.5 마치며

CHAPTER 11 LLM을 프로덕션 환경에서 사용하기
_11.1 들어가는 글
_11.2 클로즈드 소스 LLM을 프로덕션 환경에 배포하기
_11.3 프로덕션 환경에 오픈 소스 LLM 배포하기
_11.4 마치며

CHAPTER 12 LLM 평가하기
_12.1 들어가는 글
_12.2 생성 작업 평가하기
_12.3 이해 과제 평가하기
_12.4 마치며
_12.5 계속 나아가세요!

PART 4 부록
APPENDIX A LLM 자주 묻는 질문(FAQ)
APPENDIX B LLM 용어 해설
APPENDIX C LLM 애플리케이션 개발 고려사항

저자소개

신병훈 (옮긴이)    정보 더보기
서울대학교 수학과를 졸업하고, 나눔기술과 마이크로소프트에서 개발자, 컨설턴트, 프로덕트 매니저로 일했습니다. 현재 도쿄에 있는 스타트업, BoostDraft의 프로덕트 매니저입니다.
펼치기

책속에서




이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791169219266