logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

혼자 만들면서 공부하는 딥러닝

혼자 만들면서 공부하는 딥러닝

(이미지/텍스트 분류 및 요약, 전이 학습, 트랜스포머까지 20개 딥러닝 모델 구현하기 |저자 직강 유튜브 강의 + 오픈채팅 제공)

박해선 (지은이)
한빛미디어
28,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
25,200원 -10% 0원
1,400원
23,800원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 20,160원 -10% 1000원 17,140원 >

책 이미지

혼자 만들면서 공부하는 딥러닝
eBook 미리보기

책 정보

· 제목 : 혼자 만들면서 공부하는 딥러닝 (이미지/텍스트 분류 및 요약, 전이 학습, 트랜스포머까지 20개 딥러닝 모델 구현하기 |저자 직강 유튜브 강의 + 오픈채팅 제공)
· 분류 : 국내도서 > 컴퓨터/모바일 > 인공지능
· ISBN : 9791169213714
· 쪽수 : 444쪽
· 출판일 : 2025-05-12

책 소개

딥러닝 분야를 대표하는 초창기 컴퓨터 비전 모델부터 대규모 언어 모델인 GPT, Llama, Gemma 등의 최신 모델까지! 다양한 딥러닝 모델을 구현하며 인공지능의 발전 과정은 물론, 새롭게 적용된 최신 기술까지 흥미롭게 경험해 보자.

목차

Chapter 01. 합성곱 신경망(CNN)으로 패션 상품 이미지 분류하기
01-1. 딥러닝 개발환경 구축하기
__딥러닝을 위한 준비물, 구글 코랩
__코랩의 화면 구성
__코랩으로 실습 준비하기
__키워드로 정리하는 핵심 포인트

01-2. 합성곱 신경망(CNN) 모델 이해하기
__최초의 CNN 모델 - LeNet
__합성곱 층 - Conv2D
__풀링층과 밀집층 - AveragePooling2D, Dense
__키워드로 정리하는 핵심 포인트

01-3. 패션 상품 이미지 분류하기
__LeNet 모델 만들기
__LeNet 모델 훈련하기
__키워드로 정리하는 핵심 포인트

Chapter 02.사전 훈련된 CNN 모델로 강아지와 고양이 사진 분류하기
02-1. 이미지 분류 CNN 모델 만들기
__이미지넷 대회에서 우승한 최초의 CNN 모델 - AlexNet
__사전 훈련된 CNN 모델 - VGGNet
__키워드로 정리하는 핵심 포인트

02-2. 강아지와 고양이 사진 분류하기
__VGGNet 모델 로드하기
__강아지와 고양이 사진 분류하기
__키워드로 정리하는 핵심 포인트

02-3. 강아지와 고양이 사진 분류 모델의 성능 개선하기
__훈련 성능을 높이는 CNN 모델 - ResNet
__ResNet 모델 만들기
__강아지와 고양이 사진 분류하기
__[좀 더 알아보기] GoogLeNet
__[미니 프로젝트] GoogLeNet으로 강아지와 고양이 사진 분류하기
__키워드로 정리하는 핵심 포인트

Chapter 03. 고급 CNN 모델과 전이 학습으로 이미지 분류하기
03-1. 이미지 분류 모델의 효율성 최적화하기
__ResNet의 확장 모델 - DenseNet
__모바일 환경(경량) 모델 - MobileNet
__키워드로 정리하는 핵심 포인트

03-2. 이미지 분류 모델의 성능 최적화하기
__가장 높은 성능을 내는 모델 - EfficientNet
__EfficientNet 모델 만들기
__EfficientNet 모델로 강아지 사진 분류하기
__키워드로 정리하는 핵심 포인트

03-3. 전이 학습으로 피스타치오 이미지 분류하기
__텐서플로 허브로 강아지 사진 분류하기
__허깅페이스로 강아지 사진 분류하기
__전이 학습으로 피스타치오 품종 분류하기
__[미니 프로젝트] 캐글 모델로 피스타치오 품종 분류하기
__키워드로 정리하는 핵심 포인트

Chapter 04. 트랜스포머 인코더 모델로 영화 리뷰 텍스트의 감성 분류하기
04-1. 트랜스포머 인코더 모델 이해하기
__어텐션 메커니즘
__위치 인코딩과 층 정규화
__트랜스포머 인코더 모델 만들기
__키워드로 정리하는 핵심 포인트

04-2. 전이 학습으로 영화 리뷰 텍스트의 감성 분류하기
__트랜스포머 인코더 기반 언어 이해 모델 - BERT
__KerasNLP로 영화 리뷰 텍스트의 감성 분류하기
__허깅페이스로 영화 리뷰 텍스트의 감성 분류하기
__[좀 더 알아보기] 미세 튜닝된 모델로 감성 분석하기
__키워드로 정리하는 핵심 포인트

04-3. BERT 후속 모델로 영화 리뷰 텍스트의 감성 분류하기
__BERT의 성능 개선 모델 - RoBERTa
__BERT의 경량화 모델 - DistilBERT
__[미니 프로젝트] KerasNLP로 DistilBERT 모델 만들기
__키워드로 정리하는 핵심 포인트

Chapter 05. 트랜스포머 디코더 모델로 텍스트 생성하기
05-1. GPT-2 모델로 텍스트 생성하기
__마스크드 멀티 헤드 어텐션
__트랜스포머 디코더 모듈 만들기
__GPT-2 모델로 다양한 텍스트 생성하기
__허깅페이스로 다양한 텍스트 생성하기
__키워드로 정리하는 핵심 포인트

05-2. Llama 모델로 텍스트 생성하기
__Llama 모델 이해하기
__KerasNLP로 Llama-2 모델 만들기
__Llama-2 모델로 텍스트 생성하기
__Llama-3 모델로 텍스트 생성하기
__[좀 더 알아보기] Llama-3.1과 Llama-3.2
__키워드로 정리하는 핵심 포인트

05-3. Gemma 모델로 텍스트 생성하기
__Gemma 모델 이해하기
__KerasNLP로 Gemma 모델 만들기
__Gemma 모델로 텍스트 생성하기
__Gemma-2 모델로 텍스트 생성하기
__[미니 프로젝트] KerasNLP로 Llama-3 모델 만들기
__키워드로 정리하는 핵심 포인트

Chapter 06. 트랜스포머 인코더-디코더 모델로 텍스트 요약하기
06-1. BART 모델로 텍스트 요약하기
__트랜스포머 인코더-디코더 모델 만들기
__BART 모델로 텍스트 요약하기
__키워드로 정리하는 핵심 포인트

06-2. T5 모델로 텍스트 요약하기
__T5 모델 이해하기
__T5 모델로 텍스트 요약하기
__T5-1.1 모델로 텍스트 요약하기
__[미니 프로젝트] T5-1.1 small 모델 만들기
__키워드로 정리하는 핵심 포인트

06-3. 에필로그
찾아보기

저자소개

박해선 (옮긴이)    정보 더보기
기계공학을 전공했지만 졸업 후엔 줄곧 코드를 읽고 쓰는 일을 했습니다. Microsoft AI MVP, Google AI/Cloud GDE입니다. 텐서플로 블로그(tensorflow.blog)를 운영하고 있고, 머신러닝과 딥러닝에 관한 책을 집필하고 번역하면서 소프트웨어와 과학의 경계를 흥미롭게 탐험하고 있습니다. 『혼자 만들면서 공부하는 딥러닝』(한빛미디어, 2025), 『혼자 공부하는 머신러닝+딥러닝(개정판)』(한빛미디어, 2025), 『챗GPT로 대화하는 기술』(한빛미디어, 2023), 『혼자 공부하는 데이터 분석 with 파이썬』(한빛미디어, 2023), 『Do it! 딥러닝 입문』(이지스퍼블리싱, 2019)을 집필했습니다. 『머신 러닝 Q & AI』(길벗, 2025), 『개발자를 위한 필수 수학』(한빛미디어, 2024), 『실무로 통하는 ML 문제 해결 with 파이썬』(한빛미디어, 2024), 『머신러닝 교과서: 파이토치 편』(길벗, 2023), 『스티븐 울프럼의 챗GPT 강의』(한빛미디어, 2023), 『핸즈온 머신러닝 3판』(한빛미디어, 2023), 『만들면서 배우는 생성 AI』(한빛미디어, 2023), 『코딩 뇌를 깨우는 파이썬』(한빛미디어, 2023), 『트랜스포머를 활용한 자연어 처리』(한빛미디어, 2022), 『케라스 창시자에게 배우는 딥러닝 2판』(길벗, 2022), 『개발자를 위한 머신러닝&딥러닝』(한빛미디어, 2022), 『XGBoost와 사이킷런을 활용한 그레이디언트 부스팅』(한빛미디어, 2022), 『구글 브레인 팀에게 배우는 딥러닝 with TensorFlow.js』(길벗, 2022), 『파이썬 라이브러리를 활용한 머신러닝(개정2판)』(한빛미디어, 2022), 『머신러닝 파워드 애플리케이션』(한빛미디어, 2021), 『파이토치로 배우는 자연어 처리』(한빛미디어, 2021), 『머신러닝 교과서 3판』(길벗, 2021)을 비롯해 여러 권의 책을 우리말로 옮겼습니다.
펼치기

책속에서



이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791169219396