logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

베이지안 데이터 분석 바이블

베이지안 데이터 분석 바이블

(R, JAGS, Stan을 이용한, 제2판)

존 크러슈케 (지은이), 최정렬 (옮긴이)
제이펍
42,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

베이지안 데이터 분석 바이블
eBook 미리보기

책 정보

· 제목 : 베이지안 데이터 분석 바이블 (R, JAGS, Stan을 이용한, 제2판)
· 분류 : 국내도서 > 컴퓨터/모바일 > 컴퓨터 공학 > 데이터베이스 개론
· ISBN : 9791188621316
· 쪽수 : 816쪽
· 출판일 : 2018-12-20

책 소개

무료 소프트웨어인 R, JAGS, Stan을 이용해 베이지안 데이터 분석을 수행하는 방법을 단계별로 설명한다. 입문 수준의 독자도 쉽게 이해할 수 있는 확률과 베이즈 규칙부터 시작해서 직접 구현할 수 있는 베이지안 데이터 분석을 위한 고급 응용 프로그램까지 베이지안 분석을 위한 튼튼한 토대를 제공한다.

목차

CHAPTER 1. 이 책에 대하여(먼저 읽기!) 1
1.1 누구나 이 책을 읽을 수 있다 1
1.2 이 책의 내용 3
1.3 2판에 새로 들어간 내용 6
1.4 (정중히) 피드백 보내기 8
1.5 감사의 글 9

PART 1. 기초: 모형, 확률, 베이즈 규칙, R 13
CHAPTER 2. 신뢰율, 모형, 파라미터 소개 15

2.1 베이지안 추론은 확률에 신뢰율을 재할당하는 것이다 16
2.2 확률은 기술 모형에서 파라미터값이다 22
2.3 베이지안 데이터 분석 단계 25
2.4 연습문제 32

CHAPTER 3. R 프로그래밍 언어 33
3.1 소프트웨어 다운로드 35
3.2 R 간단히 실행하기 36
3.3 R에 있는 간단한 명령어와 연산자 39
3.4 변수 유형 43
3.5 데이터 로딩과 저장 55
3.6 일부 유틸리티 함수 59
3.7 R 프로그래밍 64
3.8 그래프 그리기: 객체 열기, 저장하기 73
3.9 결론 74
3.10 연습문제 74

CHAPTER 4.확률이 뭘까? 77
4.1 가능한 모든 사건 집합 78
4.2 객관적이거나 주관적인 확률 80
4.3 확률분포 85
4.4 이원분포 96
4.5 부록: 그림 4.1에 대한 R 코드 100
4.6 연습문제 102

CHAPTER 5. 베이즈 규칙 105
5.1 베이즈 규칙 106
5.2 파라미터와 데이터에 적용하기 111
5.3 완벽 예제: 동전의 편향 추정 114
5.4 왜 베이지안 추론이 어려운가? 121
5.5 부록: 그림 5.1, 5.2의 R 코드 122
5.6 연습문제 124

PART 2. 이항확률 추론을 위한 기본지식 129
CHAPTER 6. 정확한 수학적 분석으로 이항확률 추론하기 131

6.1 가능도 함수: 베르누이 분포 132
6.2 신뢰율 기술: 베타분포 134
6.3 사후 베타분포 140
6.4 예제 142
6.5 요약 146
6.6 부록: 그림 6.4에 대한 R 코드 147
6.7 연습문제 148

CHAPTER 7. 마코프 연쇄 몬테카를로 151
7.1 표본이 큰 분포 근사하기 153
7.2 메트로폴리스 알고리즘 간단히 보기 154
7.3 더 일반적인 메트로폴리스 알고리즘 165
7.4 깁스 표본 추출: 두 동전의 편향 추정하기 170
7.5 MCMC 대표성, 정확도, 효율 187
7.6 요약 198
7.7 연습문제 199

CHAPTER 8. JAGS 203
8.1 JAGS와 R의 관계 203
8.2 완벽 예제 205
8.3 자주 사용하는 분석에 대한 간단한 스크립트 218
8.4 예제: 편향 차이 219
8.5 JAGS로 사전분포에서 표본 추출하기 224
8.6 JAGS에서 사용 가능한 확률분포 226
8.7 RunJAGS 병렬 처리를 통해 더 빠르게 표본 추출하기 228
8.8 JAGS 모형 확장에 대한 조언 231
8.9 연습문제 232

CHAPTER 9. 계층모형 235
9.1 어느 주조소에서 만든 하나의 동전 237
9.2 어느 주조소에서 만든 여러 개의 동전 245
9.3 계층모형 내 수축 262
9.4 JAGS 가속화 264
9.5 계층 확장: 범주 내 개체 267
9.6 연습문제 276

CHAPTER 10. 모형 비교와 계층모형화 281
10.1 일반식과 베이즈 인자 282
10.2 예제: 두 군데 동전 주조소 285
10.3 MCMC로 풀이 290
10.4 예측: 모형 평균화 307
10.5 자연적으로 설명되는 모형 복잡성 308
10.6 사전분포에 대한 극민감도 311
10.7 연습문제 315

CHAPTER 11. 영가설 유의성 검정 317
11.1 좋은 의도가 깔린 값 320
11.2 사전 지식 336
11.3 확신 구간과 최고밀도구간 339
11.4 다중비교 347
11.5 표본 추출 분포의 유용성 351
11.6 연습문제 354

CHAPTER 12. 베이지안 점(영)가설 추정 접근 357
12.1 추정 접근 358
12.2 모형 비교 접근 366
12.3 모형 추정과 모형 비교의 관계 376
12.4 추정 아니면 모형 비교? 378
12.5 연습문제 379

CHAPTER 13. 목표, 검정력, 표본크기 383
13.1 검정력 의지 384
13.2 계산력과 표본크기 390
13.3 순차 검정과 정확도 목표 409
13.4 토의 419
13.5 연습문제 423

CHAPTER 14. Stan 427
14.1 HMC 표본 추출 428
14.2 Stan 설치 435
14.3 완벽 예제 435
14.4 Stan으로 모형을 하향식으로 명시하기 443
14.5 한계와 추가 사항 444
14.6 연습문제 445

PART 3 일반선형모형 447
CHAPTER 15. 일반선형모형 개요 449

15.1 변수 유형 450
15.2 예측 변수의 선형조합 454
15.3 조합된 예측 변수로부터 노이즈가 있는 예상 데이터로 연결하기 465
15.4 GLM을 식으로 나타내기 474
15.5 연습문제 477

CHAPTER 16.한 개나 두 개 집단에 대한 계량 예상 변수 479
16.1 정규분포의 평균과 표준편차 추정 480
16.2 이상치와 로버스트 추정: t분포 489
16.3 두 개 집단 498
16.4 다른 노이즈 분포와 데이터 변환 504
16.5 연습문제 505

CHAPTER 17. 계량형 예측 변수가 하나인 계량형 예상 변수 509
17.1 단순선형회귀 510
17.2 로버스트 선형회귀 512
17.3 집단 내 개체에 대한 계층 회귀 523
17.4 이차 추세와 가중된 데이터 529
17.5 모형 확장에 대한 단계와 위험성 535
17.6 연습문제 540

CHAPTER 18. 계량형 예측 변수가 다수인 계량형 예상 변수 543
18.1 다중선형회귀 544
18.2 계량 예측 변수의 곱셈 상호작용 560
18.3 회귀계수의 수축 565
18.4 변수 선택 571
18.5 연습문제 586

CHAPTER 19. 단일 명목형 예측 변수와 계량형 예상 변수 589
19.1 계량 데이터의 다중 집단 기술하기 590
19.2 전통적인 분산분석 592
19.3 계층적 베이지안 접근 방식 593
19.4 계량 예측 변수 포함 605
19.5 이분산과 외측치에 대한 견고성 610
19.6 연습문제 616

CHAPTER 20. 다중 명목형 예측 변수와 계량형 예상 변수 619
20.1 다중 명목 예측 변수가 있는 계량 데이터 집단 기술 620
20.2 계층적 베이지안 접근 방식 624
20.3 재스케일화는 상호작용, 등분산성, 정규성을 변화시킬 수 있다 635
20.4 이상치에 대한 이분산과 견고성 638
20.5 개체 내 설계 642
20.6 모형 비교 접근 653
20.7 연습문제 656

CHAPTER 21. 이분형 예상 변수 659
21.1 다중 계량형 예측 변수 660
21.2 회귀계수 해석 668
21.3 로버스트 로지스틱 회귀 673
21.4 명목형 예측 변수 675
21.5 연습문제 685

CHAPTER 22. 명목형 예상 변수 689
22.1 소프트맥스 회귀 690
22.2 조건부 로지스틱 회귀 695
22.3 JAGS 실행 699
22.4 모형 일반화와 변형 708
22.5 연습문제 709

CHAPTER 23. 순서형 예상 변수 711
23.1 잠재된 계량형 변수가 있는 순서형 데이터의 모형화 712
23.2 단일 집단 사례 715
23.3 두 개 집단 사례 722
23.4 계량형 예측 변수 사례 727
23.5 사후 예측 739
23.6 일반화와 확장 740
23.7 연습문제 741

CHAPTER 24. 계수형 예상 변수 745
24.1 푸아송 지수 모형 746
24.2 머리카락과 눈색 다시 보기 753
24.3 상호작용 대비, 수축, 총괄 검정의 예 755
24.4 분할표에 대한 로그 선형모형 757
24.5 연습문제 758

CHAPTER 25. 트렁크 속 도구 763
25.1 베이지안 분석 보고 763
25.2 최고밀도구간 계산 함수 767
25.3 재파라미터화 771
25.4 JAGS에서의 검열 데이터 774
25.5 앞으로 할 일은? 779

참고문헌 781
찾아보기 792

저자소개

존 크러슈케 (지은이)    정보 더보기
크러슈케 박사는 미국 인디아나 블루밍턴에 있는 인디애나대학교에서 심리학 뇌과학과와 통계학과의 겸임교수로 있다. 그는 인디애나대학교에서 우수강의상을 여덟 차례나 수상했으며, 미국 국립 과학원에서 트롤랜드(Troland) 연구상을 받았고, 인디애나대학교로부터 레막(Remak) 특별 연구자상도 받았다. 그는 독자, 그리고 동물에게 친절하다.
펼치기
최정렬 (옮긴이)    정보 더보기
KAIST에서 이론물리학을 전공하고, 인공위성을 수출하는 우주항공 전문기업 쎄트렉아이에서 인공위성 영상을 분석하는 데이터 과학자로 일했다. 지금은 쎄트렉아이의 자회사인 에스아이에이(SIA)에서 인공지능연구소장을 맡고 있다. 주 연구 분야는 베이지안 딥러닝이며, 모델의 불확실성을 베이지안 방법으로 측정하는 기술에 대해 연구·개발하고, 최근에는 딥 뉴럴 네트워크가 결과를 판단할 때 주시하는 영역을 시각화해서 사용자가 이해할 수 있게 하는 설명화 인공지능(Explainable AI)에 대해 몰두하고 있다. 좌우명은 ‘2% 과학적인 한국인’이다.
펼치기

책속에서



추천도서

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책