logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

알파고를 분석하며 배우는 인공지능

알파고를 분석하며 배우는 인공지능

(딥 러닝, 몬테카를로 트리 탐색, 듀얼 네트워크, 강화 학습 구조 이해하기)

오츠키 토모시 (지은이), 정인식 (옮긴이)
제이펍
26,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
23,400원 -10% 0원
카드할인 10%
2,340원
21,060원 >
알라딘 로딩중
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
aladin 18,200원 -10% 910원 15,470원 >

책 이미지

알파고를 분석하며 배우는 인공지능
eBook 미리보기

책 정보

· 제목 : 알파고를 분석하며 배우는 인공지능 (딥 러닝, 몬테카를로 트리 탐색, 듀얼 네트워크, 강화 학습 구조 이해하기)
· 분류 : 국내도서 > 컴퓨터/모바일 > 인공지능
· ISBN : 9791188621644
· 쪽수 : 332쪽
· 출판일 : 2019-07-25

책 소개

《네이처》에 게재된 알파고 및 알파고 제로에 관한 난해한 학술 논문을 읽고 해석해서 알파고에 이용되는 딥 러닝, 강화 학습, 몬테카를로 트리 탐색과 알파고 제로에 이용되는 듀얼 네트워크의 구조에 대해 알기 쉽게 설명했다.

목차

CHAPTER 1 알파고의 등장 1
1.1 게임 AI의 역사와 발전 2
1.1.1 앨런 튜링과 AI 2
1.2 천재 데미스 하사비스의 등장 5
1.2.1 신동 데미스 하사비스 5
1.3 알파고의 활약 7
1.3.1 알파고의 활약 7
1.4 바둑 AI의 기초 13
1.4.1 바둑의 규칙 13
1.4.2 바둑 AI를 구현한다는 것은 무엇인가? 16
1.4.3 ‘다음의 한 수’ 태스크 20
1.4.4 ‘다음의 한 수’ 태스크의 어려운 점 21
1.4.5 머신 러닝을 이용한 ‘다음의 한 수’ 태스크 22
1.4.6 알파고의 롤 아웃 정책 학습 26
1.5 정리 30

CHAPTER 2 딥 러닝 - 바둑 AI는 순간적으로 수를 떠올린다 31
이 장에서 설명할 내용 32
2.1 딥 러닝이란? 34
2.1.1 AI는 사람의 직관을 실현할 수 있을까? 34
2.2 필기체 숫자 인식의 예 42
2.2.1 필기체 숫자 인식이란? 42
2.2.2 필기체 숫자 인식의 데이터 세트 ‘MNIST’ 42
2.2.3 신경망을 사용한 필기체 숫자 인식 44
2.2.4 필기체 숫자 인식에 대한 컨볼루션 신경망 47
2.2.5 다단계의 신경망에서도 유효한 활성화 함수 51
2.2.6 오류 역전파 방법에 기초한 CNN의 필터 가중치 학습 54
2.2.7 화상 처리 CNN의 발전 60
2.3 알파고의 컨볼루션 신경망 64
2.3.1 알파고의 컨볼루션 신경망 64
2.3.2 ‘다음의 한 수’ 태스크와 화상 인식의 유사성 65
2.3.3 바둑의 수를 선택하는 CNN - SL 정책 네트워크 66
2.3.4 SL 정책 네트워크의 입력 48채널의 특징 71
2.3.5 SL 정책 네트워크의 컨볼루션 계산 예 75
2.3.6 SL 정책 네트워크의 계산량 77
2.3.7 SL 정책 네트워크의 학습용 데이터 획득 81
2.3.8 SL 정책 네트워크의 학습 기법 84
2.3.9 SL 정책 네트워크의 학습 결과 87
2.3.10 국면의 유리 불리를 예측하는 CNN(밸류 네트워크) 90
2.4 Chainer로 CNN 학습시키기 93
2.4.1 MNIST의 신경망 학습 부분 작성하기 93
2.4.2 SL 정책 네트워크의 학습 부분 작성하기 96
2.5 정리 100

CHAPTER 3 강화 학습 - 바둑 AI는 경험을 배운다 101
이 장에서 설명할 내용 102
3.1 강화 학습이란? 104
3.1.1 어떻게 경험에서 배울 것인가? 104
3.2 강화 학습의 역사 108
3.2.1 강화 학습 108
3.3 멀티 암드 밴딧 문제 112
3.3.1 강화 학습의 사례 112
3.3.2 UCB1 알고리즘 116
3.4 미로를 풀기 위한 강화 학습 118
3.4.1 4 × 4칸으로 이루어진 미로 118
3.4.2 가치 기반의 방식: Q 학습을 통해 미로 해결 120
3.4.3 정책 기반 방식: 정책 경사법을 통해 미로 해결 124
3.5 비디오 게임 조작 스킬을 얻기 위한 강화 학습 127
3.5.1 DQN 127
3.6 알파고의 강화 학습 131
3.6.1 알파고의 강화 학습 131
3.6.2 정책 경사법에 근거하는 강화 학습 134
3.6.3 RL 정책 네트워크의 성능 137
3.6.4 밸류 네트워크 학습용의 데이터 작성 기법 138
3.7 정리와 과제 143

CHAPTER 4 탐색 - 바둑 AI는 어떻게 예측할까? 145
이 장에서 설명할 내용 146
4.1 2인 제로섬 유한 확정 완전 정보 게임 148
4.1.1 어떻게 수를 예측할까? 148
4.2 게임에서의 탐색 153
4.2.1 SL 정책 네트워크 153
4.3 기존의 게임 트리 탐색(민맥스 트리 탐색) 155
4.3.1 ‘완전 탐색’의 개념 155
4.3.2 탐색 포인트 ? 가지치기와 평가 함수 162
4.4 바둑에서의 몬테카를로 트리 탐색 165
4.4.1 몬테카를로 방법 165
4.4.2 바둑에서의 몬테카를로 방법: 원시 몬테카를로 166
4.4.3 몬테카를로 트리 탐색 170
4.4.4 몬테카를로 트리 탐색의 결과와 최종적인 수 탐색 179
4.4.5 몬테카를로 트리 탐색의 개선 182
4.5 몬테카를로 트리 탐색의 성공 요인과 과제 185
4.5.1 CrazyStone과 Gnu Go 185
4.5.2 단 1줄로 다시 태어난 CrazyStone 186
4.6 정리 188
4.6.1 탐색 188

CHAPTER 5 알파고의 완성 189
5.1 알파고의 설계도 190
5.1.1 알파고의 재료 190
5.1.2 전체를 제어하는 AI 192
5.2 비동기 정책 가치 갱신 몬테카를로 트리 탐색 195
5.2.1 세 가지 정책의 특징 195
5.2.2 비동기 정책 가치 갱신 몬테카를로 트리 탐색 197
5.2.3 APV-MCTS의 선택 처리 200
5.2.4 APV-MCTS의 전개 처리 201
5.2.5 APV-MCTS의 평가 처리 201
5.2.6 APV-MCTS의 갱신 처리 202
5.3 대량 CPU·GPU의 이용 204
5.3.1 대량의 CPU와 GPU에 의한 병렬 탐색 204
5.3.2 로크리스 해시 206
5.3.3 가상 손실 208
5.4 알파고의 강력함 211
5.4.1 몬테카를로 트리 탐색, 밸류 네트워크, 정책 네트워크의 조합 효과 211

CHAPTER 6 알파고에서 알파고 제로로 213
6.1 시작에 앞서 214
6.2 알파고 제로에서의 딥 러닝 216
6.2.1 듀얼 네트워크의 구조 218
6.2.2 듀얼 네트워크의 학습 224
6.2.3 알파고 제로의 딥 러닝 정리 227
6.3 알파고 제로에서의 몬테카를로 트리 탐색 228
6.3.1 알파고 제로의 몬테카를로 트리 탐색 개요 228
6.3.2 몬테카를로 트리 탐색의 플로 차트 230
6.3.3 알파고 제로의 몬테카를로 트리 탐색 정리 233
6.4 알파고 제로에서의 강화 학습 234
6.4.1 알파고 제로의 강화 학습 기법 236
6.4.2 강화 학습의 계산 시간 242
6.4.3 알파고 제로의 강화 학습은 무엇을 하고 있나? 245
6.4.4 강화 학습의 효과 247
6.4.5 알파고 제로의 강화 학습 정리와 그 후의 진전 248
6.5 알파고 제로의 강력함 251
6.6 알파고 제로는 지식 없이 만들 수 있을까? 253
6.7 알파고나 알파고 제로에 약점은 있을까? 255
6.7.1 알파고와 알파고 제로의 약점 가능성 255
6.8 알파고 제로의 향후 미래 257
6.8.1 바둑계의 미래는 어떻게 될까? 257
6.8.2 AI의 과제 258

Appendix 1 수식에 관하여 263
A1.1 콘볼루션 신경망의 학습 법칙 도출 264
A1.1.1 SL 정책 네트워크의 학습 법칙 도출 264
A1.1.2 밸류 네트워크의 학습 법칙 도출 265
A1.1.3 듀얼 네트워크의 손실 함수에 관한 보충 267
A1.2 강화 학습의 학습 법칙 도출 269
A1.2.1 파알고의 RL 정책 네트워크 강화 학습 방법의 학습 법칙 도출 269
A1.2.2 미로를 예로 든 정책 경사법의 학습 법칙 도출 271

Appendix 2 바둑 프로그램용 UI 소프트웨어 GoGui 및 GoGui용 프로그램 DeltaGo 이용 방법 273
A2.1 DeltaGo란? 274
A2.1.1 DeltaGo의 특징 274
A2.2 GoGui의 설치 및 GoGui용 프로그램 DeltaGo 이용 방법 276
A2.2.1 DeltaGo 다운로드와 압축 풀기 276

찾아보기 289

저자소개

오츠키 토모시 (지은이)    정보 더보기
2001년에 도쿄대학 계수공학과를 졸업하였으며, 2003년에 도쿄대학원의 신영역 창성과학연구과의 석사 과정을 수료하였다. 이후 머신러닝 및 최적화 등의 연구와 개발에 참여하였다. 2001년부터 게임 AI 프로그래머로서 바둑 및 장기 프로그램 개발에 참여하였는데, 그가 개발한 장기 프로그램 ‘오쇼기’는 2009년 세계 컴퓨터 장기 선수권 대회에서 2위를 차지했다. 한편, 그는 정보 이공학 박사 학위 소유자이기도 하다.
펼치기
정인식 (옮긴이)    정보 더보기
숭실대학교에서 전자계산학을 전공하고 현대정보기술 eBiz 기술팀에서 웹 애플리케이션 개발 및 B2B 마켓플레이스 설루션을 연구했다. 그 후 이동통신 단말기 분야로 옮겨 휴대폰 부가서비스 개발 업무를 담당했으며, 일본에서 키스코 모바일사업부 팀장으로 교세라의 북미향 휴대폰 개발에 참여했다. 퇴직 후 현재는 일본 주식회사 WiseJIn의 대표이사 겸 엔지니어로, 일본의 주요 통신사와 공공 서비스 분야에서 업무 프로세스 개선을 위한 IT 컨설팅을 펼치며 데이터 분석 관련 툴과 웹 서비스 개발을 하고 있다. 《네트워크 이해 및 설계 가이드(개정판)》(제이펍, 2022), 《배워서 바로 쓰는 스프링 부트 2》(한빛미디어, 2020), 《알파고를 분석하며 배우는 인공지능》(제이펍, 2019) 등 20권 이상의 책을 번역했다.
펼치기

책속에서

머신 러닝이란 컴퓨터에 ‘학습’을 시켜서 어떤 태스크에 대한 컴퓨터의 ‘예측 능력’과 ‘판별 능력’을 향상시켜 나가는 방법이다. 컴퓨터는 모든 국면을 기억할 수 없지만, ‘비슷한 국면에서 유사한 수가 좋은 수가 될 것이다’라는 것을 가정하여 배후에 있는 규칙성을 구하는 것이 목표다.


CNN에서는 필터 가중치가 공유되므로 모든 링크에 독립적인 가중치(파라미터)를 주는 전체 결합 네트워크와 비교하면 학습해야 할 파라미터의 수가 적다. 예를 들어, 만일 3 × 3의 필터가 16개인 경우, 파라미터의 수는 입력 16개, 출력이 16장인 경우(16 × 16 × 3 × 3) 약 2,300개가 되며, 이는 1계층 당 약 8만 개나 되는 전체 결합 네트워크보다 압도적으로 적다.


Q 학습의 경우 처음에는 모든 가치가 0이라는 초깃값부터 시작한다. 또한, 인접하는 칸의 가치를 바탕으로 가치 함수를 갱신하므로 첫 번째 에피소드에서는 보상을 얻을 수 있는 출구의 직전 칸 가치만이 갱신된다. 그것이 에피소드가 진행됨에 따라 시작 측에 가치가 전달되어 가는 과정을 확인할 수 있다. 결국 최단 경로에 해당하는 칸의 가치가 높아진다.


추천도서

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책
9791190665742