책 이미지
책 정보
· 분류 : 국내도서 > 컴퓨터/모바일 > 인공지능
· ISBN : 9791188621668
· 쪽수 : 760쪽
· 출판일 : 2019-09-17
책 소개
목차
1장 신경망 입문
1.1 소개 1
1.1.1 인간 대 컴퓨터: 인공지능의 한계 확장 4
1.2 신경망의 기본 구조 6
1.2.1 단일 계산층: 퍼셉트론 7
1.2.2 다층 신경망 25
1.2.3 계산 그래프로서의 다층망 28
1.3 역전파를 이용한 신경망 훈련 30
1.4 신경망 훈련의 실질적인 문제점들 35
1.4.1 과대적합 문제점 35
1.4.2 기울기 소실 및 폭발 문제 41
1.4.3 수렴의 어려움 41
1.4.4 국소 가짜 최적해 42
1.4.5 계산의 어려움 43
1.5 함수 합성이 강력한 이유 44
1.5.1 비선형 활성화 함수의 중요성 47
1.5.2 깊이를 이용한 매개변수 요구수준 감소 49
1.5.3 통상적이지 않은 신경망 구조들 51
1.6 흔히 쓰이는 신경망 구조들 54
1.6.1 얕은 모형으로 기본적인 기계 학습 흉내 내기 54
1.6.2 방사상 기저 함수(RBF) 신경망 54
1.6.3 제한 볼츠만 기계 55
1.6.4 순환 신경망 56
1.6.5 합성곱 신경망 59
1.6.6 위계적 특징 공학과 미리 훈련된 모형 61
1.7 고급 주제 64
1.7.1 강화 학습 64
1.7.2 자료 저장과 계산의 분리 65
1.7.3 생성 대립 신경망(GAN) 66
1.8 주요 벤치마크 두 가지 67
1.8.1 필기 숫자들을 담은 MNIST 데이터베이스 67
1.8.2 ImageNet 데이터베이스 69
1.9 요약 70
1.10 문헌 정보 71
1.10.1 동영상 강의 73
1.10.2 소프트웨어 정보 74
연습문제 75
2장 얕은 신경망을 이용한 기계 학습
2.1 소개 79
2.2 이진 분류 모형을 위한 신경망 구조 82
2.2.1 퍼셉트론 다시 보기 83
2.2.2 최소제곱 회귀 85
2.2.3 로지스틱 회귀 91
2.2.4 지지 벡터 기계 94
2.3 다중 분류 모형을 위한 신경망 구조들 97
2.3.1 다부류 퍼셉트론 97
2.3.2 웨스턴-왓킨스 SVM 99
2.3.3 다항 로지스틱 회귀(소프트맥스 분류기) 101
2.3.4 다중 분류를 위한 위계적 소프트맥스 103
2.4 해석성과 특징 선택을 위한 돌출 요인 역전파 104
2.5 자동부호기를 이용한 행렬 인수분해 105
2.5.1 자동부호기의 기본 원리 106
2.5.2 비선형 활성화 함수 113
2.5.3 심층 자동부호기 116
2.5.4 이상치 검출에 응용 119
2.5.5 은닉층이 입력층보다 넓은 경우 120
2.5.6 기타 응용 122
2.5.7 추천 시스템: 행 색인과 행 가치 예측 124
2.5.8 논의 128
2.6 word2vec: 단순 신경망 구조의 한 응용 129
2.6.1 연속 단어 모음을 이용한 신경망 단어 내장 130
2.6.2 스킵그램 모형을 이용한 신경망 내장 134
2.6.3 word2vec(SGNS)은 로그 행렬 인수분해이다 142
2.6.4 보통의 스킵그램은 다항 행렬 인수분해이다 145
2.7 그래프 내장을 위한 간단한 신경망 구조 146
2.7.1 임의의 간선 횟수 처리 148
2.7.2 다항 모형 149
2.7.3 DeepWalk 및 node2vec의 관계 149
2.8 요약 150
2.9 문헌 정보 151
2.9.1 소프트웨어 정보 153
연습문제 154
3장 심층 신경망의 훈련
3.1 소개 157
3.2 아주 상세한 역전파 알고리즘 160
3.2.1 역전파와 계산 그래프 추상 160
3.2.2 해결책은 동적 계획법 166
3.2.3 활성화 후 변수를 이용한 역전파 167
3.2.4 활성화 전 값을 이용한 역전파 171
3.2.5 여러 활성화 함수의 갱신 공식 174
3.2.6 벡터 중심적 역전파의 분리 관점 176
3.2.7 다중 출력 노드 및 은닉 노드의 손실함수 179
3.2.8 미니배치 확률적 경사 하강법 180
3.2.9 역전파에서 가중치 공유를 처리하는 요령 183
3.2.10 기울기 계산의 정확성 확인 184
3.3 설정과 초기화 문제 186
3.3.1 초매개변수 조정 186
3.3.2 특징 전처리 188
3.3.3 초기화 191
3.4 기울기 소실 및 폭발 문제 193
3.4.1 기하학으로 살펴본 기울기 비의 효과 194
3.4.2 활성화 함수의 선택을 이용한 부분적인 해법 196
3.4.3 뉴런의 죽음과 ‘뇌손상’ 198
3.5 경사 하강 전략들 199
3.5.1 학습 속도 감쇄 200
3.5.2 운동량 기반 학습 201
3.5.3 매개변수 고유 학습 속도 204
3.5.4 절벽과 고차 불안정성 210
3.5.5 기울기 절단 211
3.5.6 2차 미분 212
3.5.7 폴리액 평균 224
3.5.8 극소점과 가짜 최소점 225
3.6 배치 정규화 226
3.7 가속과 압축을 위한 실질적인 요령들 232
3.7.1 GPU 가속 232
3.7.2 병렬 및 분산 구현 235
3.7.3 모형 압축을 위한 알고리즘 요령 237
3.8 요약 242
3.9 문헌 정보 243
3.9.1 소프트웨어 정보 245
연습문제 246
4장 일반화 능력을 위한 심층 학습 모형의 훈련
4.1 소개 249
4.2 편향 대 분산 절충 관계 256
4.2.1 공식적인 관점 258
4.3 모형의 조정 및 평가와 관련된 일반화 문제점 262
4.3.1 예비와 교차 검증을 이용한 모형 평가 264
4.3.2 자료 집합의 규모에 따른 훈련상의 문제점 266
4.3.3 자료 추가 수집 필요성 판정 266
4.4 벌점 기반 정칙화 267
4.4.1 잡음 주입과의 관계 269
4.4.2 정칙화 271
4.4.3 정칙화 대 정칙화 272
4.4.4 은닉 단위에 대한 벌점: 희소 표현 학습 273
4.5 앙상블 방법 274
4.5.1 배깅과 부표집 275
4.5.2 매개변수 기반 모형 선택과 평균화 277
4.5.3 무작위 연결 생략 278
4.5.4 드롭아웃 278
4.5.5 자료 섭동 앙상블 283
4.6 조기 종료 284
4.6.1 분산의 관점에서 본 조기 종료 285
4.7 비지도 사전훈련 286
4.7.1 비지도 사전학습의 변형들 290
4.7.2 지도 사전훈련은 어떨까? 291
4.8 연속법과 커리큘럼 학습 293
4.8.1 연속법 294
4.8.2 커리큘럼 학습 295
4.9 매개변수 공유 296
4.10 비지도 학습의 정칙화 298
4.10.1 값 기반 벌점: 희소 자동부호기 298
4.10.2 잡음 주입: 잡음 제거 자동부호기 299
4.10.3 기울기 기반 벌점: 축약 자동부호기 301
4.10.4 은닉 확률 구조: 변분 자동부호기 305
4.11 요약 314
4.12 문헌 정보 315
4.12.1 소프트웨어 정보 317
연습문제 318
5장 방사상 기저 함수 신경망
5.1 소개 321
5.2 RBF 망의 훈련 326
5.2.1 은닉층의 훈련 326
5.2.2 출력층의 훈련 328
5.2.3 직교 최소제곱 알고리즘 331
5.2.4 완전 지도 학습 332
5.3 RBF 망의 변형 및 특수화 333
5.3.1 퍼셉트론 판정기준을 이용한 분류 334
5.3.2 경첩 손실함수를 이용한 분류 334
5.3.3 RBF 망의 선형 분리가능성 개선 335
5.3.4 RBF 망을 이용한 보간 337
5.4 핵 방법들과의 관계 338
5.4.1 특수한 RBF 망으로서의 핵 회귀 338
5.4.2 특수한 RBF 망으로서의 핵 SVM 339
5.4.3 관찰 340
5.5 요약 341
5.6 문헌 정보 342
연습문제 343
6장 제한 볼츠만 기계
6.1 소개 345
6.1.1 역사적 관점 346
6.2 홉필드 망 347
6.2.1 훈련된 홉필드 망의 최적 상태 구성 349
6.2.2 홉필드 망의 훈련 352
6.2.3 간단한 영화 추천 시스템의 구축과 그 한계 354
6.2.4 홉필드 망의 표현력 증가 355
6.3 볼츠만 기계 357
6.3.1 볼츠만 기계의 자료 생성 359
6.3.2 볼츠만 기계의 가중치 학습 360
6.4 제한 볼츠만 기계 363
6.4.1 RBM의 훈련 366
6.4.2 대조 발산 알고리즘 367
6.4.3 실천상의 문제와 알고리즘 수정 369
6.5 제한 볼츠만 기계의 응용 370
6.5.1 RBM을 이용한 차원 축소와 자료 재구축 371
6.5.2 RBM을 이용한 협업 필터링 374
6.5.3 RBM을 이용한 분류 378
6.5.4 RBM을 이용한 주제 모형화 383
6.5.5 RBM을 이용한 다중 모드 자료 기계 학습 385
6.6 RBM을 이진 자료 이외의 자료에 적용 387
6.7 중첩된 RBM 389
6.7.1 비지도 학습 392
6.7.2 지도 학습 392
6.7.3 심층 볼츠만 기계와 심층 믿음망 393
6.8 요약 394
6.9 문헌 정보 394
연습문제 397
7장 순환 신경망
7.1 소개 399
7.1.1 순환 신경망의 표현력 403
7.2 순환 신경망의 구조 404
7.2.1 RNN을 이용한 언어 모형 예제 408
7.2.2 시간에 따른 역전파 411
7.2.3 양방향 순환 신경망 415
7.2.4 다층 순환 신경망 418
7.3 순환 신경망 훈련의 어려움과 그 해법 420
7.3.1 층 정규화 424
7.4 반향 상태 신경망 426
7.5 장단기 기억(LSTM) 429
7.6 게이트 제어 순환 단위(GRU) 433
7.7 순환 신경망의 응용 436
7.7.1 자동 이미지 캡션 생성 437
7.7.2 순차열 대 순차열 학습과 기계 번역 439
7.7.3 문장 수준 분류 444
7.7.4 언어적 특징을 활용한 토큰 수준 분류 445
7.7.5 시계열 예상 및 예측 447
7.7.6 시간적 추천 시스템 450
7.7.7 2차 단백질 구조 예측 453
7.7.8 종단간 음성 인식 453
7.7.9 필기 인식 454
7.8 요약 455
7.9 문헌 정보 455
7.9.1 소프트웨어 정보 457
연습문제 458
8장 합성곱 신경망
8.1 소개 461
8.1.1 역사 및 생물학의 영향 462
8.1.2 좀 더 넓은 관점에서 본 합성곱 신경망 464
8.2 합성곱 신경망의 기본 구조 465
8.2.1 여백 채우기 472
8.2.2 보폭 474
8.2.3 전형적인 설정 475
8.2.4 ReLU 층 476
8.2.5 풀링 477
8.2.6 층들의 완전 연결 479
8.2.7 서로 다른 층들의 교대 구성 480
8.2.8 국소 반응 정규화 484
8.2.9 위계적 특징 공학 485
8.3 합성곱 신경망의 훈련 487
8.3.1 합성곱 층에 대한 역전파 487
8.3.2 역/전치 필터를 이용한 합성곱 연산으로서의 역전파 489
8.3.3 행렬 곱셈으로서의 합성곱 및 역전파 490
8.3.4 자료 증강 493
8.4 합성곱 신경망 구조의 사례 연구 495
8.4.1 AlexNet 495
8.4.2 ZFNet 499
8.4.3 VGG 500
8.4.4 GoogLeNet 504
8.4.5 ResNet 507
8.4.6 깊이의 효과 512
8.4.7 미리 훈련된 모형들 512
8.5 시각화와 비지도 학습 514
8.5.1 훈련된 합성곱 신경망의 특징 시각화 515
8.5.2 합성곱 자동부호기 522
8.6 합성곱 신경망의 응용 529
8.6.1 내용 기반 이미지 검색 530
8.6.2 물체 위치 추정 530
8.6.3 물체 검출 532
8.6.4 자연어 처리와 순차열 학습 534
8.6.5 동영상 분류 535
8.7 요약 536
8.8 문헌 정보 537
8.8.1 소프트웨어 및 자료 집합 정보 540
연습문제 542
9장 심층 강화 학습
9.1 소개 543
9.2 상태 없는 알고리즘: 여러 팔 강도 547
9.2.1 단순한 알고리즘 548
9.2.2 탐욕 알고리즘 548
9.2.3 상계 방법 549
9.3 강화 학습의 기본 틀 550
9.3.1 강화 학습의 어려움 553
9.3.2 틱택토 게임을 위한 간단한 강화 학습 554
9.3.3 심층 학습의 역할과 잠정적 알고리즘 555
9.4 가치 함수 학습의 부트스트래핑 558
9.4.1 함수 근사기로서의 심층 강화 학습 모형 560
9.4.2 응용 사례: 아타리 설정을 위한 강화 학습 심층 신경망 565
9.4.3 정책 내 방법 대 정책 외 방법: SARSA 566
9.4.4 상태의 모형화 대 상태-동작 쌍 568
9.5 정책 기울기 방법 571
9.5.1 유한차분법 573
9.5.2 가능도비 방법 574
9.5.3 지도 학습과 정책 기울기 방법의 결합 577
9.5.4 행위자-비평자 방법 578
9.5.5 연속 동작 공간 580
9.5.6 정책 기울기 방법의 장단점 581
9.6 몬테카를로 트리 검색 582
9.7 사례 연구 584
9.7.1 알파고: 세계 최고 수준의 인공지능 바둑 기사 584
9.7.2 스스로 배우는 로봇 591
9.7.3 대화 시스템 구축: 챗봇을 위한 심층 학습 596
9.7.4 자율주행차 600
9.7.5 강화 학습을 이용한 신경망 구조의 추론 603
9.8 안전과 관련된 실무적인 어려움들 604
9.9 요약 606
9.10 문헌 정보 606
9.10.1 소프트웨어와 실험 환경 정보 608
연습문제 610
10장 심층 학습의 고급 주제들
10.1 소개 613
10.2 주의 메커니즘 616
10.2.1 시각적 주의의 순환 모형 618
10.2.2 기계 번역을 위한 주의 메커니즘 622
10.3 외부 메모리가 있는 신경망 627
10.3.1 가상 정렬 게임 628
10.3.2 신경 튜링 기계 631
10.3.3 미분 가능 신경 컴퓨터 개괄 639
10.4 생성 대립 신경망(GAN) 641
10.4.1 생성 대립 신경망의 훈련 642
10.4.2 변분 자동부호기와 비교 646
10.4.3 GAN을 이용한 이미지 자료 생성 647
10.4.4 조건부 생성 대립 신경망 649
10.5 경쟁 학습 655
10.5.1 벡터 양자화 657
10.5.2 코호넨 자기조직화 지도 658
10.6 신경망의 한계 662
10.6.1 대담한 목표: 단발 학습 662
10.6.2 대담한 목표: 에너지 효율적 학습 665
10.7 요약 667
10.8 문헌 정보 667
10.8.1 소프트웨어 정보 669
연습문제 671
참고문헌 673
찾아보기 721
리뷰
책속에서
심층 학습 모형은 로지스틱 회귀나 선형회귀 같은 좀 더 단순한 모형들을 차곡차곡 쌓은 것으로 볼 수 있다. 이번 장에서 상세히 이야기하겠지만, 선형 뉴런과 S자형 활성화 함수를 조합하면 로지스틱 회귀 모형이 된다. 선형 단위와 S자형 활성화 함수의 조합은 좀 더 복잡한 신경망의 구축에도 광범위하게 쓰인다. 이로부터 다음과 같은 질문이 자연스럽게 제기된다.
이러한 미니배치 확률적 경사 하강법이 안정성, 속도, 메모리 요구량을 가장 잘 절충하는 선택일 때가 많다. 미니배치 확률적 경사 하강법을 사용할 때는 한 층의 출력들이 벡터가 아니라 행렬이며, 순전파에서는 가중치 행렬과 활성화 값 행렬을 곱한다. 가중치들의 행렬을 갱신하는 역전파에서도 마찬가지로 행렬 곱셈이 필요하다. 따라서 미니배치 확률적 경사 하강법 구현은 보통의 확률적 경사 하강법 구현보다 메모리를 더 많이 소비하며, 이러한 높은 메모리 요구수준은 미니배치의 크기를 제한하는 요소이다.
연속법과 커리큘럼 학습은 사람이 뭔가를 배우는 과정과도 잘 맞는다. 사람들은 먼저 간단한 개념을 배우고 더 복잡한 개념으로 나아갈 때가 많다. 그러한 원리에 기초해서 학습 주제들을 적절히 배치한 것을 흔히 커리큘럼 또는 교육과정이라고 부르는데, 잘 정의된 커리큘럼은 학습 성과를 높이는 데 도움이 된다. 이러한 원리는 기계 학습에서도 잘 작동하는 것으로 보인다. 그럼 연속법과 커리큘럼 학습을 좀 더 자세히 살펴보자.



















