logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

실시간 검색어

검색가능 서점

도서목록 제공

MLOps 구축 가이드북

MLOps 구축 가이드북

(초보자를 위한 ML 모델 서빙 준비하기)

김남기 (지은이)
루비페이퍼
36,000원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
32,400원 -10% 0원
1,800원
30,600원 >
yes24 로딩중
교보문고 로딩중
11st 로딩중
영풍문고 로딩중
쿠팡 로딩중
쿠팡로켓 로딩중
G마켓 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

MLOps 구축 가이드북
eBook 미리보기

책 정보

· 제목 : MLOps 구축 가이드북 (초보자를 위한 ML 모델 서빙 준비하기)
· 분류 : 국내도서 > 컴퓨터/모바일 > 프로그래밍 개발/방법론 > 프로그래밍 기초/개발 방법론
· ISBN : 9791193083208
· 쪽수 : 544쪽
· 출판일 : 2024-07-22

책 소개

MLOps의 기본적인 작동 원리를 이해하고 머신러닝 모델을 실제 서비스에 적용하기 위한 실습을 단계별로 구성했다. 데이터 과학자가 다루는 MLOps 파이프라인을 반영한 데이터 수집, 데이터 전처리, 모델 학습 등의 ML 모델 개발은 물론 모델 성능 모니터링, Nginx 구성 및 무중단 배포 등의 과정까지 경험해볼 수 있다.

목차

01장 ML 서비스 이해하기
_1.1 ML 모델 서비스 이해
__1.1.1 대출 시스템 구성
__1.1.2 신용대출 ML 서비스 목표
_1.2 ML 시스템 구성
_1.3 시스템 환경 구성
__1.3.1 Github 프로젝트 가져오기
__1.3.2 JupyterLab 서비스
__1.3.3 MariaDB 서비스

02장 ML 모델 개발 실습하기
_2.1 데이터 수집
__2.1.1 데이터 설명
__2.1.2 데이터 상세 설명
_2.2 ML 모델 개발
__2.2.1 데이터 추출
__2.2.2 데이터 전처리
__2.2.3 모델 학습
__2.2.4 모델 예측

03장 Airflow 프로젝트 생성 및 DAG 개발
_3.1 Apache Airflow 소개
_3.2 프로젝트 환경 설정
__3.2.1 Github 프로젝트 다운로드
__3.2.2 PyCharm 프로젝트 환경 설정
__3.2.3 Apache Airflow 2.7.2 설치
__3.2.4 기타 설정
_3.3 Airflow DAG란?
__3.3.1 DAG 정의(Definition)
__3.3.2 Task 정의(Definition)
__3.3.3 Task 의존성(Dependencies)
_3.4 Airflow DAG 개발
__3.4.1 DAG 개발
__3.4.2 DAG 실행
__3.4.3 DAG 결과 확인
_3.5 데이터추출 파이프라인 개발
__3.5.1 준비 사항
__3.5.2 DAG 개발

04장 MLOps 알아보기
_4.1 MLOps란?
__4.1.1 MLOps 정의
__4.1.2 MLOps의 탄생 배경
__4.1.3 MLOps의 주요 발전 과정
__4.1.4 DevOps와 MLOps 차이점
_4.2 MLOps의 원칙
__4.2.1 테스트(Testing)
__4.2.2 모니터링(Monitoring)
__4.2.3 버전 관리(Versioning)
__4.2.4 지속적인 X(Continuous X)
__4.2.5 자동화(Automation)
__4.2.6 재현성(Reproducibility)
_4.3 MLOps 필요성
_4.4 MLOps 목표
_4.5 MLOps 라이프사이클
__4.5.1 ML 개발
__4.5.2 학습 조작화
__4.5.3 지속적 학습
__4.5.4 모델 배포
__4.5.5 예측 서빙
__4.5.6 지속적 모니터링
__4.5.7 데이터 및 모델 관리
_4.6 MLOps 성숙도 수준
__4.6.1 MLOps 0단계
__4.6.2 MLOps 1단계
__4.6.3 MLOps 2단계

05장 MLOps 수준 0: 배치 ML 파이프라인 구현
_5.1 Empty Task DAG 개발
_5.2 데이터 추출 Task 구현
__5.2.1 패키지 및 파일 생성
__5.2.2 데이터 처리 SQL 작성
__5.2.3 DAG Task 기능 추가
__5.2.4 테스트 코드 추가
_5.3 데이터 전처리 Task 구현
__5.3.1 패키지 및 파일 생성
__5.3.2 Preparation 클래스 생성 및 테스트 코드 추가
__5.3.3 Preparation 클래스 개발
__5.3.4 Preparation 클래스 리팩토링
__5.3.5 Docker 이미지 개발
__5.3.6 DAG Task 추가
_5.4 예측 Task 구현
__5.4.1 패키지 및 파일 생성
__5.4.2 Prediction 클래스 생성 및 테스트 코드 추가
__5.4.3 Prediction 클래스 개발
__5.4.4 Prediction 클래스 리팩토링
__5.4.5 Docker 이미지 추가 개발
__5.4.6 DAG Task 추가
_5.5 서비스 적용
__5.5.1 스케줄 시작

06장 MLOps 수준 1: 지속적 학습 ML 파이프라인
_6.1 Empty Task DAG 개발
_6.2 데이터 추출 Task 구현
__6.2.1 패키지 및 파일 생성
__6.2.2 데이터 처리 SQL 작성
__6.2.3 DAG Task 기능 추가
__6.2.4 테스트 코드 추가
_6.3 데이터 전처리 Task 구현
__6.3.1 Preparation 클래스 생성 및 테스트 코드 추가
__6.3.2 Preparation 클래스 개발
__6.3.3 Docker 이미지 개발
__6.3.4 DAG Task 추가
_6.4 모델 학습 및 모델 평가 Task 구현
__6.4.1 Training 클래스 생성 및 테스트 코드 추가
__6.4.2 Training 클래스 개발
__6.4.3 Docker 이미지 추가 개발
__6.4.4 DAG Task 추가
_6.5 모델 버전 관리 구현
__6.5.1 모델 버전이란?
__6.5.2 지속적 학습 로깅 개발
__6.5.3 모델 버전 관리 개발
__6.5.4 Training 클래스 적용

07장 MLOps 수준 1: ML 모델 API 개발
_7.1 FastAPI 맛보기
__7.1.1 FastAPI란?
__7.1.2 프로젝트 생성
__7.1.3 Hello World
_7.2 모델 실시간 API 개발
__7.2.1 _ _main_ _ 블록 추가
__7.2.2 라우트(Route) 개발
__7.2.3 서비스 클래스 개발
__7.2.4 모델 자원 로드
__7.2.5 데이터 전처리 개발
__7.2.6 모델 예측 개발
__7.2.7 모델 API 로그 개발
__7.2.8 도커 이미지 개발

08장 MLOps 수준 1: ML 모델 지속적 배포
_8.1 ML 모델 API 가용성
__8.1.1 Nginx 서비스 구성
__8.1.2 Nginx를 이용한 Reverse proxy 설정
_8.2 ML 모델 지속적 배포
__8.2.1 CT모델버전 및 CT모델학습기준일 Task 개발
__8.2.2 대상서비스확인 Task 개발
__8.2.3 모델 서비스 재시작 Task 개발
__8.2.4 지속적 배포 Trigger 개발

저자소개

김남기 (지은이)    정보 더보기
카카오뱅크에서 MLOps 플랫폼 구축을 이끌며 ML 엔지니어 리더로 활동하고 있습니다. 지난 17년 동안 CRM 개발, 데이터 엔지니어, 데이터 분석가, ML 엔지니어 등 데이터와 머신러닝 관련 다양한 직무를 맡아 왔습니다. 그동안의 경험과 if카카오에서 발표했던 내용을 토대로 이 책을 집필하게 되었습니다. __mlops.study@gmail.com __youtu.be/Fj0MOkzCECA
펼치기

책속에서



추천도서

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책