logo
logo
x
바코드검색
BOOKPRICE.co.kr
책, 도서 가격비교 사이트
바코드검색

인기 검색어

일간
|
주간
|
월간

실시간 검색어

검색가능 서점

도서목록 제공

Linear Algebra

Linear Algebra (Hardcover, 1994)

Klaus Janich (지은이)
Springer Verlag
112,990원

일반도서

검색중
서점 할인가 할인률 배송비 혜택/추가 실질최저가 구매하기
92,650원 -18% 0원
4,640원
88,010원 >
yes24 로딩중
교보문고 로딩중
notice_icon 검색 결과 내에 다른 책이 포함되어 있을 수 있습니다.

중고도서

검색중
서점 유형 등록개수 최저가 구매하기
로딩중

eBook

검색중
서점 정가 할인가 마일리지 실질최저가 구매하기
로딩중

책 이미지

Linear Algebra
eBook 미리보기

책 정보

· 제목 : Linear Algebra (Hardcover, 1994) 
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 대수학 > 선형대수학
· ISBN : 9780387941288
· 쪽수 : 206쪽
· 출판일 : 1994-09-02

목차

1. Sets and Maps.- 1.1 Sets.- 1.2 Maps.- 1.3 Test.- 1.4 Remarks on the Literature.- 1.5 Exercises.- 2. Vector Spaces.- 2.1 Real Vector Spaces.- 2.2 Complex Numbers and Complex Vector Spaces.- 2.3 Vector Subspaces.- 2.4 Test.- 2.5 Fields.- 2.6 What Are Vectors?.- 2.7 Complex Numbers 400 Years Ago.- 2.8 Remarks on the Literature.- 2.9 Exercises.- 3. Dimension.- 3.1 Linear Independence.- 3.2 The Concept of Dimension.- 3.3 Test.- 3.4 Proof of the Basis Extension Theorem and the Exchange Lemma.- 3.5 The Vector Product.- 3.6 The “Steinitz Exchange Theorem”.- 3.7 Exercises.- 4. Linear Maps.- 4.1 Linear Maps.- 4.2 Matrices.- 4.3 Test.- 4.4 Quotient Spaces.- 4.5 Rotations and Reflections in the Plane.- 4.6 Historical Aside.- 4.7 Exercises.- 5. Matrix Calculus.- 5.1 Multiplication.- 5.2 The Rank of a Matrix.- 5.3 Elementary Transformations.- 5.4 Test.- 5.5 How Does One Invert a Matrix?.- 5.6 Rotations and Reflections (continued).- 5.7 Historical Aside.- 5.8 Exercises.- 6. Determinants.- 6.1 Determinants.- 6.2 Determination of Determinants.- 6.3 The Determinant of the Transposed Matrix.- 6.4 Determinantal Formula for the Inverse Matrix.- 6.5 Determinants and Matrix Products.- 6.6 Test.- 6.7 Determinant of an Endomorphism.- 6.8 The Leibniz Formula.- 6.9 Historical Aside.- 6.10 Exercises.- 7. Systems of Linear Equations.- 7.1 Systems of Linear Equations.- 7.2 Cramer’s Rule.- 7.3 Gaussian Elimination.- 7.4 Test.- 7.5 More on Systems of Linear Equations.- 7.6 Captured on Camera!.- 7.7 Historical Aside.- 7.8 Remarks on the Literature.- 7.9 Exercises.- 8. Euclidean Vector Spaces.- 8.1 Inner Products.- 8.2 Orthogonal Vectors.- 8.3 Orthogonal Maps.- 8.4 Groups.- 8.5 Test.- 8.6 Remarks on the Literature.- 8.7 Exercises.- 9. Eigenvalues.- 9.1 Eigenvalues and Eigenvectors.- 9.2 The Characteristic Polynomial.- 9.3 Test.- 9.4 Polynomials.- 9.5 Exercises.- 10. The Principal Axes Transformation.- 10.1 Self-Adjoint Endomorphisms.- 10.2 Symmetric Matrices.- 10.3 The Principal Axes Transformation for Self-Adjoint Endomorphisms.- 10.4 Test.- 10.5 Exercises.- 11. Classification of Matrices.- 11.1 What Is Meant by “Classification”?.- 11.2 The Rank Theorem.- 11.3 The Jordan Normal Form.- 11.4 More on the Principal Axes Transformation.- 11.5 The Sylvester Inertia Theorem.- 11.6 Test.- 11.7 Exercises.- 12. Answers to the Tests.- References.

이 포스팅은 쿠팡 파트너스 활동의 일환으로,
이에 따른 일정액의 수수료를 제공받습니다.
이 포스팅은 제휴마케팅이 포함된 광고로 커미션을 지급 받습니다.
도서 DB 제공 : 알라딘 서점(www.aladin.co.kr)
최근 본 책