책 이미지

책 정보
· 분류 : 외국도서 > 과학/수학/생태 > 수학 > 무한수학
· ISBN : 9780387941905
· 쪽수 : 525쪽
· 출판일 : 1994-01-07
목차
One: Preliminaries.- Section 1. Notationand terminology.- Section 2. Group theory.- Section 3. Topology.- ChapterTwo : Elementsof thetheoryof topological groups.- Section 4. Basic definitions and facts.- Section 5. Subgroups and quotient groups.- Section 6. Product groups and projective limits.- Section 7. Properties of topologicalgroups involving connectedness.- Section 8. Invariant pseudo-metrics and separation axioms.- Section 9. Structure theory for compact and locally compact Abelian groups.- Section 10. Some special locally compact Abelian groups.- Three: Integration on locally compact spaces.- Section 11. Extension of a linear functional and construction of a measure.- Section 12. The spaces Lp(X) (1 ? p ? ?).- Section 13. Integration on product spaces.- Section 14. Complex measures.- Four: Invariant functionals.- Section 15. The Haar integral.- Section 16. More about Haar measure.- Section 17. Invariant means defined for all bounded functions.- Section 18. Invariant means on almost periodic functions.- Five: Convolutions and group representations.- Section 19. Introduction to convolutions.- Section 20. Convolutions of functions and measures.- Section 21. Introduction to representation theory.- Section 22. Unitary representations of locally compact groups.- Six : Characters and duality of locally compact Abelian groups.- Section 23. The character group of a locally compact Abelian group.- Section 24. The duality theorem.- Section 25. Special structure theorems.- Section 26. Miscellaneous consequences of the duality theorem.- Appendix A: Abelian groups.- B: Topological linear spaces.- C: Introduction to normed algebras.- Index of symbols.- Index of authors and terms.